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Abstract- In this project, developing effective suites of unit test cases 
presents a number of challenges. Specifications of unit behavior are 
usually informal and are often incomplete or ambiguous, leading to the 
development of overly general or incorrect unit tests. This project will 
investigate strategies for amplifying the power and applicability of 
testing resources. The strategies will transform existing tests into new 
tests that add complementary testing capabilities to the validation 
process. The developed strategies will be unique in their treatment of 
tests as data. This will require the development of test representations 
that can be efficiently manipulated, and test transformations to realize 
operations that generate new and valuable tests. We see Carving as the 
first of our transformations, but many others will follow. 
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1. INTRODUCTION: 
An important component of Empirical Software Engineering 
(ESE) research involves the measurement, observation, 
analysis and understanding of software engineering in 
practice. Results analyzed without understanding the 
contexts in which they were obtained can lead to wrong and 
potentially interpretation. Their exist several myths in 
software engineering, most of which have been excepted for 
years as being conventional wisdom without having been 
questioned. In this talk we deal briefly with a few popular 
mix in software engineering ranging from testing and static 
analysis to distributed development and high light the 
importance of context and generalization. 
Our goal is to carve the behavior of a target unit or units 
from a whole system execution. We capture components that 
may influence the behavior of the targeted unit. Those 
components are then automatically assembled into a test 
harness that establishes the pre-state of the unit/s that was 
encountered during system test execution. From that state, 
the unit/s is replayed and the resulting state is queried to 
determine if there are differences with the recorded unit 
post-state. 
SOFTWARE engineers develop unit test cases to validate 
individual program units (e.g., methods, classes, and 
packages) before they are integrated into the whole system. 
By focusing on an isolated unit, unit tests are not constrained 
or influenced by other parts of the system in exercising the 
target unit. This smaller scope for testing usually results in 
more efficient test execution and fault isolation relative to 
full system testing and debugging [1], [12]. Unit test cases 
are also key components of several development and 
validation methodologies, such as extreme programming 
(XP) [2], test-driven development (TDD) practices [3], 
continuous testing and efficient test prioritization and 
selection techniques. Developing effective suites of unit test 
cases presents a number of challenges. Specifications of unit 
behavior are usually informal and are often incomplete or 
ambiguous, leading to the development of overly general or 
incorrect unit tests. Furthermore, such specifications may 
evolve independently of implementations requiring 
additional maintenance of unit tests even if implementations 

remain unchanged. Testers may find it difficult to imagine 
sets of unit input values that exercise the full range of unit 
behavior and thereby fail to exercise the different ways in 
which the unit will be used as a part of a system. An 
alternative approach to unit test development, which does 
not rely on specifications, is based on the analysis of a unit’s 
implementation. Testers developing unit tests in this way 
may focus, for example, on achieving coverage-adequacy 
criteria in testing the target unit’s code. Such tests, however, 
are inherently susceptible to errors of omission with respect 
to specified unit behavior and may thereby miss certain 
faults. Finally, unit testing requires the development of test 
harnesses or the setup of a testing framework (e.g., JUnit) to 
make the units executable in isolation.                                  
Software engineers also develop system tests, usually based 
on documents that are available for most software systems 
that describe the system’s functionality from the user’s 
perspective, for example, requirement documents and user’s 
manuals. This makes system tests appropriate for 
determining the readiness of a system for release or its 
acceptability to customers. Additional benefits accrue from 
testing system-level behaviors directly. First, system tests 
can be developed without an intimate knowledge of the 
system internals, which reduces the level of expertise 
required by test developers and makes tests less sensitive to 
implementation-level changes that are behavior preserving. 
Second, system tests may expose faults that unit tests do not, 
for example, faults that emerge only when multiple units are 
integrated and jointly utilized. Finally, since they involve 
executing the entire system, no individual harnesses need to 
be constructed. While system tests are an essential 
component of all practical software validation methods, they 
do have several disadvantages. They can be expensive to 
execute; for large systems, days or weeks, and considerable 
human effort may be needed for running a thorough suite of 
system tests [15]. In addition, even very thorough system 
testing may fail to exercise the full range of behavior 
implemented by a system’s particular units; thus, system 
testing cannot be viewed as an effective replacement for unit 
testing. Finally, fault isolation and repair during system 
testing can be significantly more expensive than during unit 
testing. 
The preceding characterization of unit and system tests, 
although not comprehensive, illustrates that system and unit 
tests have complementary strengths and that they offer a rich 
set of trade-offs. In this paper, we present a general 
framework for the carving and replaying of what we call 
differential unit tests (DUTs) which aim to exploit those 
trade-offs. We termed them differential because their 
primary function is to detect differences between multiple 
versions of a unit’s implementation. DUTs are meant to be 
focused and efficient like traditional unit tests, yet they are 
automatically generated along with a custom test-harness 
making them inexpensive to develop and easy to evolve. In 
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addition, since they indirectly capture the notion of 
correctness encoded in the system tests from which they are 
carved, they have the potential for revealing faults related to 
complex patterns of unit usage. In our approach, DUTs are 
created from system tests by capturing components of the 
exercised system that may influence the behavior of the 
targeted unit and that reflect the results of executing the unit; 
we term this carving because it involves extracting the 
relevant parts of the program state corresponding to the 
components exercised by a system test. Those components 
are automatically assembled into a test harness that 
establishes the prestate of the unit that was encountered 
during system test execution. 
From that state, the unit is replayed and the resulting state is 
queried to determine if there are differences with the 
recorded unit poststate. Ideally, a set of DUT will. 

1. retain the fault detection effectiveness of system 
tests  on the target unit, 
2. execute faster or use fewer resources than system 
tests, and 
3. be applicable across multiple system versions. In 
addition, for program changes that are behavior 
preserving, effective DUTs will 
4. report few differences that are not indicative of 
actual differences in system test results. 

For changes that are intentionally behavior modifying, DUTs 
will, of course, detect differences. Rather than simply 
indicating that a difference is detected, our approach is able 
to provide a fine-grained view of the differences through the 
unit test outcomes. Using this information, developers will 
be able to quickly spot the effect of their intended 
modifications and to see where errors have been introduced. 
 In this paper, we investigate DUT carving and 
replay (CR) techniques with respect to the four numbered 
criteria. Through a set of controlled empirical studies within 
the context of regression testing, we compare the cost and 
effectiveness of system tests and carved unit tests. The 
results indicate that carved test cases can be as effective as 
system test cases in terms of fault detection, but much more 
efficient in the presence of localized changes. When 
compared against emerging work on providing automated, 
extraction of powerful unit tests from system executions, 
[16], [18], the contributions of this paper are a framework 
for automatically carving and replaying DUTs that accounts 
for a wide variety of implementation strategies with different 
trade-offs, a novel state-based automated instantiation of the 
framework for CR at a method level that offers a range of 
costs, flexibility, and scalability, and an empirical 
assessment of the efficiency and effectiveness of CR of 
DUTs on multiple versions of three Java artifacts. We note 
that this paper is a revised version of an earlier paper 
presented at the Foundations of Software Engineering 
Symposium 2006 [11] that includes various framework 
extensions presented in the next section, the testing part 
described in section 1, key generation in section 2, a more 
complete and detailed implementation presented in Section 
3, and additional assessments described in Section 4. 
Empirical study in Section 5, and related work in Section 6. 
Generating Regression Unit Tests using a Combination of 
Verification and Capture & Replay: 
 
 

SECTION 1: 
The combination of software verification and testing 
techniques is increasingly unit tests and regression test 
oracle. Hence, the two groups of techniques have 
complementary strengths, and therefore are ideal candidates 
for a tool-chain approach proposed in this paper. The first 
phase produces, for a given system, unit tests with high 
coverage. However, when using them to test a unit, its 
environment is tested as well – resulting in a high cost of 
testing. To solve this problem, the second phase captures the 
various executions of the program, which are monitored by 
the output of the first phase. The output of the second phase 
is a set of unit tests with high code coverage, which uses 
mock objects to test the units. Another advantage of this 
approach is the fact that the generated tests can also be used 
for regression testing. Testing techniques, in contrast, are 
powerful for detecting software faults and for gaining some 
degree of confidence that the program under test (PUT) 
behaves correctly in its runtime environment. VBT 
techniques use information gained from a verification 
attempt and can generate much targeted tests to reveal 
program faults or tests that exhibit high code coverage. Thus, 
both verification and testing techniques can profit when 
being combined. Yet, we can even go a step further in 
combining both approaches. We found that more traditional 
testing techniques have complementary strengths to VBT 
techniques. One such technique is capture and replay (CaR), 
whose strengths are the generation of isolated unit tests [13, 
14] and regression test oracles [13, 17, 4].  
 Unit testing plays a major role in the software 
development process. A unit test explores a particular 
behavior of the unit that is tested. The unit that we deal with 
is a class. It explores a particular aspect of the behavior of 
the class under test, hereafter CUT. Testing a unit in 
isolation is an important principle of unit testing [10]. 
However, the behavior of the CUT usually depends on other 
classes, some of them not even existing yet. Mock objects 
[12] are used to solve this problem by replacing actual calls 
to methods of other classes by calls that simply return the 
required value, thus testing the unit in isolation. 
Furthermore, in order to gain confidence in the test result the 
test should have high code coverage. The maintenance phase 
is the most expensive part of the software life cycle, and is 
estimated to comprise at least 50% of the total software 
development expenses [16]. Unit testing enables 
programmers to re-factor code safely and make sure it 
works. Extreme Programming [19] adopts an approach that 
requires that all the software classes have unit tests; code 
without unit tests may not be released. Whenever code 
changes introduce a regression bug into a unit, it can quickly 
be identified and fixed. Hence, unit tests provide a safety net 
of regression tests and validation tests. This encourages 
developers to re-factor working code, i.e., change its internal 
structure without altering the external behavior [7]. Research 
related to regression testing often focuses on test selection 
and test prioritization techniques, e.g. [9, 11]. The focus of 
this paper is different. 
 We exploit the synergies of combining VBT and 
CaR tools for unit regression testing. We propose an 
approach for the automatic generation of unit and regression 
tests in the context of verification. Our goal is to improve 
test suites that are generated by VBT tools and CaR tools 
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separately. The proposed approach maintains the high test 
coverage provided by VBT tools while at the same time 
reduces the complexity of the tests through automatic 
generation of mock objects. Using mock objects facilitates 
the isolation of the unit under test. Some existing CaR tools 
enable to create mock objects. On the other hand, CaR tools 
do not provide means to achieve high code coverage, and 
can therefore benefit from being combined with coverage 
guaranteeing tools such as VBT tools. The advantage of 
using VBT tools is that the verification process can be used 
to ensure that only correct behavior is captured by the CaR 
tool. We identified that high code coverage and isolation are 
separate issues. They can be achieved independently using 
the two groups of techniques which have complementary 
strengths. Therefore we concluded that those groups of 
techniques are ideal candidates for the following tool-chain. 
The first phase produces, for a given system, unit tests with 
high code coverage. The second phase captures the various 
executions of the program, monitored by the output of the 
first phase. The output of the second phase is a set of unit 
tests with high coverage, which uses mock objects to test the 
units, in isolation. 
The main contributions of the paper are described in 
Sections 4.We identify what the complementary strengths of 
VBT and CaR techniques are (Section 4). In Section 3 we 
present a novel tool-chain approach for unit regression 
testing in the context of verification and for unit regression 
testing in general. To the best of our knowledge, this tool-
chain has not been considered with VBT tools so far. We 
have implemented the proposed approach using a concrete 
VBT and a concrete CaR tool resulting in the toolchain 
KeYGenU. By applying KeYGenU to a small banking 
application we provide a proof of concept of our approach, 
as described in Section 4. The advantages and possible 
limitations of the approach are then discussed in Sections 1 
and 6. The other sections are related work (Section 6) and 
conclusions (Section 6). Complementary Strengths of the 
Regarded Techniques In the introduction we have described 
the complementary strengths of verification and testing in 
general. Both approaches should be combined in order to 
achieve reliable software and in order to optimize the 
verification and testing process. In this section we describe, 
by means of simple examples, advantages and disadvantages 
of CaR tools and coverage guaranteeing tools like VBT tools 
that are more specific to our tool-chain approach. 
 
1.1 The Proposed Approach 
We have analyzed the advantages and the problems of 
verification-based testing (VBT) tools and of capture and 
replay (CaR) tools separately. VBT tools support the 
verification process by helping to find software faults. They 
can generate test cases with high code coverage. These tools, 
however, usually generate neither mock objects nor 
regression test oracles that are based on previous program 
executions. CaR tools are strong at abstracting complicated 
program behavior and at automatically generating regression 
test oracles. The CaR tools, however, can do this only for 
specific program runs, that have to be provided somehow. In 
contrast, VBT tools can generate program inputs for distinct 
program runs. 

 
Fig. 1. The creation of a tool chain and its 

application to unit regression testing 
 
From this analysis it becomes clear that these kinds of tools 
should be combined into a tool chain. Thus, the output of the 
VBT tool serves as input to the CaR tool, as shown in Figure 
1. Our approach consists of two steps. In the first one the 
user tries to verify the program P using a verification tool 
that supports VBT. When a verification attempt fails, VBT is 
activated to generate a unit test suite JT for P. The so 
generated tests help in debugging P and the process is 
repeated until P is verifiable. When the verification succeeds 
the VBT tool is activated to generate a test suite JT that 
ensures coverage of the code of P. The generated test suite 
consists of one or more executable programs that are 
provided as input to the CaR tool. Thus when JT is executed 
the execution of the code under test is captured. The CaR 
tool in turn creates another unit test suite – JT’. If the CaR 
tool replays the observed execution of each test, 
consequently the high code coverage of JT is preserved by 
JT’. Furthermore, JT’ benefits from the improvements that 
are gained by using the CaR tool. Depending on the 
capabilities of the CaR tool this can be the isolation of units 
and the extension of tests with regression-test oracles. Hence 
the tool chain employs the strengths of both kinds of tools 
involved. The test suite JT’ can then be used to regression 
test P’ that is the next development version of P. 
 
Advantages and Limitations 
We regard our approach from two perspectives. On the one 
hand, CaR tools can be used to further increase the quality of 
VBT. On the other hand, CaR tools can benefit from being 
combined with VBT tools. The VBT generated tests can be 
used to drive program’s execution to ensure the coverage of 
the whole code. From this perspective our approach can be 
generalized by allowing general coverage ensuring tools for 
the first phase. However, for CaR tools, such as [4, 17, 13], 
it is important that during the capture phase only correct 
program behavior is observed – and this can be best ensured 
when a verification tool is used in the first phase. The 
approach combines also the limitations of the involved tools. 
CaR-based regression testing tools can discover changes in 
the behavior when a program is modified, but they cannot 
distinguish between intentional and not intentional changes. 
Another problem occurs with CaR tools that generate mock 
entities. It is often unclear under what preconditions the 
behavior of a mock entity is valid when the mock entity is 
executed in a state not previously observed by the CaR tool. 
Some advantages and limitations are specific to the 
particular tools and techniques. So are also the choice of the 
test target and mock objects. We advise the reader to refer to 
the referenced publications. Verification tools are typically 
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applicable to much smaller programs than testing tools. Our 
approach targets therefore at quality assurance of small 
systems that are safety or security critical. Building a tool-
chain adds complexity to the verification process.  
We expect, however, a payoff on the workload when the 
target system is modified and the quality of the software has 
to be maintained. Most VBT techniques are based on 
symbolic execution which is a challenging issue. 
Considering Listing 1.2 of Section 2, when symbolic 
execution reaches Line 8 the source code of write() may not 
be available or it may be too complicated for symbolic 
execution. Typically, in such situation method contracts that 
abstract the method call can be provided. Alternatively 
techniques such as [15] can be used that combine symbolic 
execution and runtime-execution. Regression testing 
techniques such as [11], for example, are often concerned 
with test selection and test prioritization. The goal is to 
reduce the execution time of the regression test suite and 
thus to save costs. Graves et al. [9] describe test selection 
techniques for given regression test suites. They reduce the 
scope of the PUT that is executed by selecting a subset of the 
test suite. Our approach provides an alternative partitioning 
of the PUT (Figure 2) that can reduce its tested scope and 
should be considered in combination with test selection 
techniques. Instead of reducing the number of tests, parts of 
the program are substituted by mock entities. When using 
selection techniques, a typical regression testing is usually 
described as follows (cf., for example, [9]). Let P be the 
original version of the program, P0 the modified version that 
we would like to test, and T is the test suite for P, then: 

1. Select T’   T. 
2. Test P’ with T’, establishing the correctness of P’ with 

respect to T’. 
3.  If necessary, create T’’, a set of new functional or 

structural test cases for P’. 
4.  Test P’ with T’’, establishing the correctness of P’ with 

respect to T’’. 
5.  Create T’’’, a new test suite and test execution profile 

for P’, from T, T’, and T’’. 

 
Fig. 2. The traditional test selection (left) versus our 

approach (right) 
 
The authors of [9] point out the following problems 
associated with each of the steps: 
1. It is not clear how to select a ‘good’ subset T’ of T with 

which to test P’. 
2. The problem of efficiently executing test suites and 

checking test results for correctness. 
3. The coverage identification problem: the problem of 

identifying portions of P’ or its specification that require 
additional testing. 

4. The problem of efficiently executing test suites and 
checking test results for correctness.  

5. The test suite maintenance problem: the problem of 
updating and storing test information. 

 

We use a slightly different model, which seems to solve the 
above issues. This model can be summarized as follows. Let 
P be the original version of the program, P’ the modified 
version that we would like to test, and T is the test suite 
which was generated for P after running the proposed tool-
chain. 
1.  Introducing mock objects produces P’’ P‘. 
2.  Test P’’ with T. 
3. Rerun the tool-chain for the modified parts of P’ to 

produce T’, covering new branches. 
The problems are solved as follows: 
1. There is no need to select a subset T’ of T. Instead we 

have to consider how to create P’’, i.e., which parts of 
the system P’ should be replaced by mock objects. 

2. The problem of efficiently executing test suites and 
checking test results for correctness is solved by using 
mock objects, thus not executing the whole system. 

3. The coverage identification problem is solved since the 
whole program may be tested. 

4. Same as step 2. 
5. The problem of updating and storing test information is 

solved by rerunning the tool-chain on the modified 
system parts. 

Safe regression test selection techniques guarantee that the 
selected subset contains all test cases in the original test suite 
that can reveal regression bugs [9]. By executing only the 
unit tests of classes that have been modified a safe and 
simple selection technique should be obtained. 
Section 2:  
We have implemented a concrete tool-chain according to 
Figure 1, called KeYGenU, and have applied it to several 
test cases. In this section we describe the two tools used by 
KeYGenU, namely KeY and GenUTest, and provide an 
example to demonstrate our ideas.  
2.1 KeY 
The KeY system [2] is a verification and test generation 
system for a subset of JAVA and a superset of JAVA 
CARD; the latter is a standardized subset of JAVA for 
programming of SmartCards. At its core, KeY is an 
automated and interactive theorem prover for firstorder 
dynamic logic, a logic that combines first-order logic 
formulas with programs allowing to express, e.g., 
correctness properties of the programs. KeY implements a 
VBT technique [6] with several extensions [5, 8]. The test 
generation capabilities are based on the creation of a proof 
tree (see Figure 3) for a formula expressing program 
correctness. The proof tree is created by interleaving first-
order logic and symbolic execution rules where the latter 
execute the PUT with symbolic values in a manner that is 
similar to lazy evaluation. Case distinctions in the program 
are therefore reflected as branches of the proof tree; these 
may also be implicit distinctions like, e.g., the raising of 
exceptions. Proof tree branches corresponding to infeasible 
program paths, i.e., paths that can never be executed due to 
contradicting branch conditions in the program, are detected 
and not analyzed any further. Soundness of the system 
ensures that all paths through the PUT are analyzed, except 
for parts where the user chooses to use abstraction. Thus, 
creating tests for those proof branches often ensures full 
feasible path coverage of the regarded program part of the 
PUT. Based on the information contained in the proof tree, 
KeY creates test data using a built-in constraint solver. The 
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PUT is initialized with the respective test data of each 
branch at a time. In this way execution of each program path 
in the proof tree is ensured. 

 
Fig. 3. Overview of verification-based testing implemented 
in KeY (left) and capture and replay implemented in 
GenUTest (right) 
 
2.2 GenUTest 
GenUTest is a prototype tool that generates unit tests [13]. 
The tool captures and logs inter-object interactions occurring 
during the execution of JAVA programs. The recorded 
interactions are then used to generate JUnit tests and mock-
object like entities called mock aspects. These can be used 
independently by developers to test units in isolation. The 
comprehensiveness of the generated unit tests depends on 
the software execution. Software runs covering a high 
percentage generate in turn unit test with similar code 
coverage. Hence, GenUTest cannot guarantee a high 
coverage. 
Figure 3 presents a high level view of GenUTest’s 
architecture and highlights the steps in each of the three 
phases of GenUTest: the capture phase, the generation 
phase, and the test phase. In the capture phase the program is 
modified to include functionality to capture its execution. 
When the modified program executes, inter-object 
interactions are captured and logged. The interactions are 
captured by utilizing AspectJ, the most popular Aspect-
Oriented Programming extension for the JAVA language 
.The generation phase utilizes the log to generate unit tests 
and mock aspects, mock-object like entities. In the test 
phase, the unit tests are used by the developer to test the 
code of the program. 
 
2.3 Testing First-Order Logic Axiom in Program 
Verification 
Program verification system based on automated theorem 
proves rely on user provided axioms in order to verify 
domain specific properties of code. AUTOCERT is a source 
code verification tool for autogenerated code in safety 
critical domains, such as flight code generated from simulink 
models in the guidance, navigation and control (GN&C) 
domain using MathWorks’ Real-Time Workshop code 
generator. AUTOCERT supports certification by formally 
verifying that the generated code complies with a range of 
mathematically specified requirements and is free of certain 
safety violation. AUTOCERT uses Automated Theorem 
Provers(ATP) based on First-Order Logic(FOL) to formally 

verify safety and functional correctness properties of auto 
generated code, as illustrated in next page figure. 
AUTOCERT works by inferring logical annotation on the 
source code, and then using a verification condition 
generator (VCG) to check these annotations. This results in a 
set of first-order verification condition (VCs) that are then 
sent to a suite of ATP. These ATPs try to build proofs based 
on the user provided axioms, which can themselves be 
arbitrary First-Order Formulas (FOS).  
If all the VCs are successfully proven, then it is graduated 
that the code complies with the properties with one 
important proviso: we need to trust the verification system, 
itself. The trusted base is the collection of components which 
must be correct for us to conclude that the code itself really 
is correct indeed, one of the main motivations for applying a 
verification tool like AUTOCERT to autocode is to remove 
the code generator a large, complex, black box-from the 
trusted base. 
The annotation inference system is not part of the trusted 
base, since annotations merely serve as hints in the 
verification process-they are ultimately checked via their 
transaction into VCs by the VCG. The logic that is encoded 
in the VCG does need to be trusted since the proofs they 
generate can be sent to the proof checker. In fact, It is the 
domain theory, defined as a set of logical axioms, that is the 
most crucial part of the trusted base. Moreover, in our 
experience, it is the most common source of bugs. 

 
AutoCERT narrows down the trusted base by verifying the 
geneated code. 
Section 3: 
A FRAMEWORK FOR TEST CARVING AND 
REPLAY 
Java programs can have millions of allocated heap instances 
[29] and hundreds of thousands of live instances at any time. 
Consequently, carving the raw state of real programs is 
impractical. We believe that cost-effective CR-based testing 
will require the application of multiple strategies that select 
information in raw program states and use that information 
to trade a measure of effectiveness to achieve practical cost. 
Strategies might include, for example, carving a single 
representative of each equivalence class of program states or 
pruning information from a carved state on which a method 
under test is guaranteed not to depend. The space of possible 
strategies is vast and a general framework for CR testing will 
aid in exploring possible cost-effectiveness tradeoffs in the 
space of CR testing techniques. For the purposes of 
explaining our framework, we consider a Java program to be 
a state transition system. At any point during the execution 
of a program, the program state S can be defined 
conceptually as all of the values in memory. A program 
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execution can be formalized either as a sequence of program 
states or as a sequence of program actions that cause state 
changes. A sequence of program states is written as _ 

0 1, ,......,s s  where is S and 0s  is the initial program 

state as defined by Java. A state 1is   is reached from is  by 

executing a single action (e.g., bytecode). A sequence of 

program actions is written as  . We denote the final state of 

an action sequence ( )s  . Regardless of how one develops, 

or generates, a unit test, there are four essential steps: 
1. identify a program state from which to initiate testing, 
2. establish that program state, 
3. execute the unit from that state, and 
4. judge the correctness of the resulting state. 
In the rest of this section, we define a general framework 
that allows different strategies to be applied in each of these 
steps.  
 
3.1 Basic Carving and Replaying 
Fig. 1 illustrates the general CR process. Given a system test 

case xst  carving a unit test case xmDUT  for target unit m 

during the execution of xst consists of capturing pres , the 

program state immediately before the first instruction of an 

activation of method m, and posts , the program state 

immediately after the final instruction of m has executed. 

The captured pair of states ( pres , posts ) defines the DUT 

case for method m, denoted xmDUT . States in this pair can 

be defined by directly capturing a pair of states in   or by 
recording the cumulative effects of sequences of program 

actions pre and post  i.e., recording s( pre ) and  

s( post ) .A CR testing approach is said to be state based if it 

records pairs ( pres , posts ) and action based if it records pairs 

( pre , post ). We note that action-state hybrid CR 

approaches that record, for example, pairs of actions 

sequences and states ( pre , posts ) may also be useful. 

 
Fig. 1. Carving and replay process. 

In practice, it is common for a method m to undergo some 

modification (e.g., to 'm ) over the program lifetime. To 
efficiently validate the effects of a modification, we replay 

xmDUT  on 'm . Replaying a DUT for a method 'm  requires 

the instantiation of pres by either loading the state pres  into 

memory or by executing  pre, depending on how the state 

was carved. From this state, execution of 'm  is initiated and 
it continues until it reaches the point corresponding to the 

carved posts . At that point, the current execution state 
'
posts  

is compared to posts  . If the post states are the same, we can 

attest that the change did not affect the behavior of the target 

unit exercised by. xmDUT .However, if the change altered 

the semantics of m, then further processing will be required 
to determine whether the alteration matches the developer’s 
expectations (we discuss the support that provided by our 
implementation of CR in Section 3.1). 
This basic CR approach suffers from several fundamental 
limitations that must be addressed in order to make CR cost-
effective. First, the proposed basic carving procedure is at 
best inefficient and likely impractical. It is inefficient 
because a method may only depend on a small portion of the 
program state, thus storing the complete state is wasted 
effort. Furthermore, two distinct complete program states 
may be identical from the point of view of a given method, 
thus carving complete states would yield redundant unit 
tests. It is impractical because storing the complete state of a 
program may be prohibitively expensive in terms of time and 
space. Second, changes to m may render 

xmDUT unexecutable in 'm . Reducing the cost of CR 

testing is important, but we must produce DUTs that are 
robust to various types of changes so that they can be 
executed across a series of system versions in order to 
recover the overhead of carving, and provide further support 
to analyze the reasons behind DUTs detected differences. 
Finally, the use of complete poststates to detect behavioral 
differences is not only inefficient but may also be too 
sensitive to behavior differences caused by reasons other 
than faults (e.g., fault fixes, algorithm improvements, and 
internal refactoring) leading to the generation of brittle tests. 
The following sections address these challenges. 
 
3.2 Improving CR with Projections  
We focus CR testing on a single method by defining 
projections on carved prestates that preserve information 
related to the unit under test and are likely to provide 
significant reduction in prestate size. 
State-based projections.  
A state projection function   : S S preserves specific 
program state components and elides the rest. For example, a 
state projection may preserve the scalar fields in the object, a 
subset of the references to other objects, or a combination of 
both. Underlying many useful state projections is the notion 

of heap reachability. An object 'o  is reachable in one 
dereference from object o if the value of some field f 

references 'o ; let 
, where 

Fields(c) denotes the set of (nonstatic) fields defined for 
class c and Class returns the class of an object. Objects 
reachable through any chain of dereferences up to length k 
from o are defined by using the iterated composition of this 

binary relation, ; as a notational 
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convenience, we will refer to this as  The positive 

transitive closure of the relation, ,  defines the 
set of all reachable objects from o in one or more 
dereferences. 
To promote replay capabilities, state-based CR testing 
approaches at the method level should use projections that 
retain at most the set of heap objects reachable from a given 
calling context. That set includes heap objects reachable 
through the receiver object, the call’s parameters, static 
fields within the method’s class, and public static fields from 
other classes. More formally, given a call  
the reachable objects from the calling context include 

1.  

2.  
3.  where Fieldss is 

the set of static fields for a class and reach has been 
extended to fields, and 

4.       
where FieldSps is the set of public static fields for a class and 
Class is the class declaring a given method. 

 
This projection is lossless for reasoning about a method 

invocation since it retains all of the information in pres  that 

could possibly be accessed by the call to m. More efficient 
projections might consider a subset of the heap elements 
captured by the calling context reachable projection. Some 
of these projections will use a notion of distance to 
determine what heap elements to preserve (e.g., retain all the 
heap elements that may be reached in up to k dereferences) 
while others may aim to maintain just the basic heap content 
and the heap structure (e.g., retain only the values of 
reference fields, thereby eliminating all scalar fields, which 
would maintain the heap shape of a program state). Some 
projections will determine the portion of the state to preserve 
ahead of time through some form of source code analysis 
(e.g., side-effects analysis or reachability analysis), while 
others will make that determination at runtime (e.g., retain 
the heap elements reachable or read during execution). 

 
Fig. 2. Application of projections. 

The range of projections makes it possible to trade 
robustness for reduction in carving cost and replaying time 
by defining projections that eliminate more state 
information. Section 3.2 presents five projections that 
exercise this trade-off.  
Action-based projections and transformations. 
Projections can also operate on sequences of program 

actions, :     to distill the portion of a program run 

that affects the prestate of a unit method. Unfortunately, a 
purely action-based approach to state capture will not work 
for all Java programs. For example, a program that calls 
native methods does not, in general, have access to native 
method instructions. To accommodate this, we can allow for 
transformation of actions during carving, i.e., replace one 
sequence of instructions with another. Transformation could 
be used, for example, to replace a call to a native method 
with an instruction sequence that implements the side effects 
of the native method. More generally, one could design an 

instance of   that would replace any trace portion with a 
summarizing action sequence. 
Applying projections. Fig. 2 illustrates two potential 
applications of projections on DUTs: test case reduction and 
test cases filtering. Reduction aims at thinning a single 
carved test case by retaining only the projected prestate (in 

Fig. 2, for example, the projection on preS  carved from 

xmDUT leads to a smaller preS ). Reducing a DUT’s prestate 

results in smaller space requirements and, more importantly, 
in quicker replay since loading time is a function of the 
prestate size. For example, a method like total Pages in Fig. 
3 that returns the int field pages presents a clear opportunity 
to benefit from a reduction that retains just the scalar fields. 
Such reduction would avoid the need to load some 
potentially large objects such as the info hashtable, making 
replay faster. Depending on the type of projection, such 
gains may be achieved at the expense of additional analysis 
and carving time (e.g., using a more precise but expensive 
analysis to determine what to carve), or reduced fault 
detection power (e.g., a projection may discard an object that 
was necessary to expose the fault). Furthermore, test 
executability may be sacrificed as well when, for example, 
the data structures needed to successfully instantiate the 
object in memory become unavailable due to applied 
projections.  In Fig. 3, the relevant program state for 
getAuthorName includes the field info of type 
java.util.Hashtable from the EnglishBook class, which stores 
the type of information for a particular book (such as 
publication date and author name). If the same scalar-only 
type reduction were applied, then DUTs for getAuthorName 
would not be replayable because the info field would be 
missing from the prestate. Under this circumstance, an 
alternative projection to enable reduction could aim for 
carving the fields of the parts of the hashtable just touched 
during the execution. The key is to identify the suitable level 
of reduction that would maximize efficiency, fault detection, 
and test executability at the same time. 
Filtering aims at removing redundant DUTs from the suite. 
Consider a method that is invoked during program 
initialization and is independent of the program parameters. 
Such a method would be exercised by all system tests in the 
same way and likely result in multiple identical DUTs for 
that particular method. Filtering by comparing complete 
prestates could remove such duplicate tests, retaining just the 

DUTs that have a unique preS . Consider a simple accessor 

method with no parameters that returns the value of a scalar 
field. If this method is invoked by tests from different 
prestates, then multiple DUTs will be carved, and filtering 
based on complete prestates will retain all of the DUTs even 
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though they exercise the same behavior. For this method, 
filtering based on a projection that preserves just the subset 
of a prestate that is reachable from this in one dereference 

may remove multiple redundant DUTs (in Fig. 2, ( )pres  

for xmDUT and for zmDUT are identical so one of them can 

be removed). Clearly, in some cases, overaggressive filtering 
may result in a lower fault detection capability since we may 
discard a DUT that is different and, hence, potentially 
valuable. Note that, contrary to test case reduction, while 
filtering may sometimes only consider subsets of program 
states to judge equivalence, the stored program states are not 
modified; consequently, test executability is preserved since 
the DUTs that are retained are complete. In practice, 
however, reduction and filtering are likely to be applied in 
tandem such that reduced tests are then filtered or filtered 
tests are then reduced. 

 
Fig. 3. Reduction and test executability. 

 
3.3 Strategies to Manage Replay Anomalies 
We have discussed how overly aggressive reductions can 
impair replay. Similarly, certain method changes such as 
modifications in a method’s signature or key data structures 
may prevent a DUT from correct replay. For example, 
consider the scenario shown in Fig. 4 where we carved 

DUTxBook from 0v  of the Book class. Replaying the 

constructor for Book with the carved DUTxBook in 1v  

encounters an error resulting from incompatible types in the 
words field between versions. 

 
Fig. 4. An example of replay failure. 

Effective CR testing must detect failures arising from 
carving limitations, differentiate them from regular 
application failures, and find ways to use this information to 
further guide the testing process and ensure the coverage of 
the target method. The detection and differentiation steps are 
implementation specific and are discussed in the following 
section, while this section focuses on what to do once a DUT 

fails to replay. When xmDUT cannot be replayed, one could 

replay the system test case xst on the new version of the 

software, while carving a new xmDUT to replace the one 

invalidated by the program modification. The idea here is to 
use the DUT failure as a trigger for the system test case 
execution to ensure the proper coverage of the target method 
by the system test while creating DUTs for the future. An 
alternative approach that avoids system test case execution 
and immediate recarving takes advantage of the existing 
body of executable DUTs on other methods that exercise the 
target method. For instance, in Fig. 4, replaying the DUTs 
for the addBook method of the Library class would exercise 
the Book constructor (through the invocation of new 
Book(title, length)) without the explicit loading of 
DUTxBook. This approach is appealing because it 
eliminates the immediate need for recarving while still 
enabling the localized execution of a changed DUT. 
However, it does not account for the potential existence of 
multiple callers and the possibility that some callers may not 
be replayable themselves. When DUTxm fails, we can 
identify a set of DUTs whose execution reaches DUTxm’s 

prestate; we call such a set a replay frontier of xmDUT . 

There may be many replay frontiers for a given DUT. 
Selection of an appropriate frontier is guided by three 
criteria:  
1) the ability of the frontier to successfully replay the 

behavior exercised in xmDUT ,  

2) the cost of executing the frontier, and 

3) the localization of defect detection relative to xmDUT . 

At one extreme, xmainDUT , i.e., the main program, 

comprises a replay frontier for any DUT. Intuitively, it 
maximizes replayability, since it is essentially an execution 
of system test case stx. On the other hand, this frontier will 
be more costly to execute than other frontiers and will 
provide a less focused characterization of detected defects. 
At the other extreme, one could identify the set of DUTs that 
directly invoke method m corresponding to the failed DUT. 
Executing these DUTs will provide localized replay of the 

behavior of xmDUT and may be significantly less expensive 

than xmainDUT . This frontier is more likely to exhibit replay 

anomalies due to the proximity to the change (e.g., when the 
caller and callee are methods in the same changed class). In 
Section 3.1, we explore a family of strategies that attempt to 
balance the three frontier selection criteria. 3.4 Adjusting 
Sensitivity through Differencing Functions 
 
3.4 Adjusting Sensitivity through Differencing 
Functions 
The basic CR testing approach described earlier compares a 
carved complete poststate to a poststate produced during 
replay to detect behavioral differences in a unit. The use of 
complete poststates is both inefficient and unnecessary for 
the same reasons as outlined above for prestates. While we 
could use comparison of poststate projections to address 
these issues, we believe that there is a more flexible solution 
that could also help control DUTs’ sensitivity to changes. 
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Method unit tests are typically structured so that, after a 
sequence of method calls that establish a desired prestate, the 
method under test is executed. When it returns, additional 
method calls and comparisons are executed to implement a 
pseudo-oracle. For example, unit tests for a red-black tree 
might execute a series of insert and delete calls and then 
query the tree height and compare it to an expected result to 
judge partial correctness. We allow a similar kind of pseudo-
oracle in CR testing by defining differencing functions on 
poststates that preserve selected information about the results 
of executing the unit under test. These differencing functions 
can take the form of poststate projections or can capture 
properties of poststates, such as tree height or size, and 
consequently may greatly reduce the size of poststates while 
preserving information that is important for detecting just the 
meaningful behavioral differences. We define differencing 
functions that map states to a selected differencing domain, 

dif: S D . Differencing in CR testing is achieved by 

evaluating '( ) ( )post post
dif s dif s . State projection 

functions are simply differencing functions where D = S. In 
addition to the reachability projections defined in the 
previous section, projections on unit method return values, 
called return differencing, and on fields of the unit instance 
referenced by this, called instance differencing, are useful 
since they correspond to techniques used widely in hand-
built unit tests. 

 
Fig. 5. Differencing sequences of poststates. 

A central issue in differential testing is the degree to which 
differencing functions are able to detect changes that 
correspond to faults while masking implementation changes. 
We refer to this as the sensitivity of a differencing function. 
Clearly, comparing complete poststates will be highly 
sensitive, detecting both faults and implementation changes. 
A projection function that only records the return value of 
the method under test will be insensitive to implementation 
changes while preserving some fault sensitivity. Note also 
that these differencing functions provide different 
incomplete views of the program state. Their incompleteness 
reduces cost and may add some level of insensitivity to 
changes in the implementation, but it could also reduce their 
fault detection effectiveness. We address this by allowing for 
multiple differencing functions to be applied in CR testing 
which has the potential to increase fault sensitivity, without 
necessarily increasing implementation change sensitivity. 
For example, using a pair of return and instance differencing 
functions allows one to detect faults in both instance field 
updates and method results, but will not expose differences 
related to deeper structural changes in the heap. Fault 
isolation efficiency could also be enhanced by the 
availability of multiple differencing functions since each 
could focus on a specific property or set of program state 
components that will help developers focus their attention on 
a potentially small portion of program state that may reflect 

the fault. DUTs can also be refined to increase their 
sensitivity in the temporal dimension by capturing sequences 

of poststate( ,pre posts  )that capture intermediate points 

during the execution of the method under test. Such poststate 
sequences can be valuable to support fault isolation and 
debugging efforts since they provide additional observability 
on program states generated during the method execution. 
Fig. 5 illustrates a scenario in which a DUT begins execution 

of m at pres . Conceptually, during replay, a sequence of 

poststates is differenced with corresponding states at 
intermediate states of the method under test. For example, at 
point 1, the test compares the current state to the 

captured 1posts , similarly at points 2 and 3 the pre and 

poststates of the call out of the unit are compared. 
Using a sequence of poststates requires that a 
correspondence be defined between locations in m and m’. 
Correspondences could be defined using a variety of 
approaches, for example, one could use the calls out of m 

and 'm to define points for poststate comparison (as is 
illustrated in Fig. 5) or common points in the text of m and 
m’ could be detected via textual differencing. Fault isolation 
information is enriched by using multiple poststates, since if 
the first detected difference is at location i, then that 
difference was introduced in the region of execution between 
location i -1 and i. Of course, storing multiple poststates may 
be expensive so its use can only be advocated to narrow the 
scope of code that must be considered for fault isolation 
once a behavioral difference is attributed to a fault. 
 
4 INSTANTIATING THE FRAMEWORK 
In this section, we describe the architecture and 
implementation details of a state-based instantiation of the 
framework for the Java programming language. Section 4 
discusses alternative CR implementations. 
4.1 System Architecture 
Fig. 6 illustrates the architecture of the CR infrastructure. 
The carving activity starts with the Carver class which takes 
four inputs: the program name, the target method(s) m 

within the program, the system test case xst  inputs, and the 

reduction and filtering options. 

 
Fig. 6. CR tool architecture. 

Carver utilizes a custom class loader CustomLoader (that 
employs the Byte Code Engineering Library (BCEL) ) to 
incorporate instrumentation code into the program. We 
instrument the bytecode for all loaded program classes 
except the ones that are in the Java API, part of the CR tool, 
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and members of third-party libraries used by the tool. The 
instrumentation uses the singleton ContextFactory class to 
store pre and poststates of program methods at the entry and 
exit points of the methods (including exceptional exit points 
forced by throw instructions in m or methods called by m). 
Every execution of a method that is targeted for CR testing 
will lead to, at least, two invocations of the ContextFactory: 
one at the entry point of the method to store spre and one at 
the exit point of the method to store spost. As discussed 
earlier, carving the entire state of the program is impractical, 
therefore the ContextFactory utilizes ContextBounding to 
determine the parts of the program state to be stored during 
carving based on the chosen projections to perform reduction 
and filtering. Once the carving scope has been determined, 
ContextFactory utilizes an open source package, XStream 
[46], to perform the serialization to XML of the heap objects 
in the defined scope. Finally, ContextFactory stores the 
serialized program states. By default, ContextBounding 
applies the most conservative projection: an interface 
reachability projection (as described in Section 2.2), and 
filters DUTs based on that projection. Several other 
projections and lossy filters are available and introduced in 
the upcoming sections. While XStream is a powerful object 
serialization package, by default it does not serialize a 
class’s static fields. However, to truly replay a method with 
the prestate that it encountered during a system test, we need 
to establish the values of static fields as well as instance 
fields since both influence the execution of the method. 
Fortunately, XStream allows a high level of customization. 
We implemented a custom extension for XStream that 
enables the serialization of and the application of projections 
to static fields by retrieving their contents including 
transitively reachable objects, serializing it using XStream, 
and placing the resulting XML in a special tag which we 
introduced to contain static fields. This XStream extension 
also takes care of deserializing the static fields and restoring 
them upon full object deserialization. 
We have implemented two options for storing poststates: 
1) complete poststate descriptions encoded in an XML 
 format  
2) unique fingerprints of poststates defined by hashing 
 of XML encodings.  
The complete representation is helpful in determining which 
part of the poststate was affected by the program changes, 
but carving execution time and storage requirements may be 
higher. Fingerprint storage allows for more efficient carving, 
storage, and difference detection, but does not allow for a 
detailed characterization of state differences. The other 
primary CR component, Replay, shares many of the core 
classes with Carver (CustomLoader, ContextBounding, 
ContextFactory) and works in a similar manner. To establish 
the desired prestate on which to invoke m0, Replay utilizes 
the ContextLoader class to obtain and load the carved spre of 
m, using XStream to deserialize the stored state. After that, 
m0 is invoked. Similar to Carver, Replay instruments the 
class of m0 and utilizes the ContextFactory, but only to store 
spost after m0 is invoked. Once m0 has been replayed, we use 
Dif, the differencing mechanism, to compare the spost of m0 
generated during Replay with the carved spost of m to 
determine whether the changes in m0 resulted in a 
behavioral difference. Currently, we have fully automated 
the differencing functions on return values, instance fields, 

state fingerprints, and complete XML state encodings which 
include static fields. 
If Replay fails for m’, the ReplayAnomalyHandler will begin 
the process of exploring the replayable frontier of m’. The 
current implementation to explore the frontier can use call 
graphs or the DUTs built-in caller information to guide the 
replay process in the presence of an anomaly.  
These two mechanisms trade carving efficiency for replay 
efficiency. Keeping track of the DUT caller information 
requires an additional tracking method within 
ContextFactory that maintains a DUT call stack which 
increases carving overhead and storage per DUT. However, 
such information often leads to a more precise determination 
of what DUT needs to be replayed in the presence of a 
replay failure, which can cut down replay time. 
 

 
Fig. 7. DUT file contents and directory structure. 

Each generated DUT is composed of two files: prestate, 
which includes the objects reachable through the method’s 
parameters or the class fields, and poststate, which contains 
the reachable objects and return value for the method. DUTs 
are organized through a directory structure of four levels that 
includes a level for system tests, a level for classes, a level 
for methods, and one for DUTs. The DUTs are assigned an 
identification hashcode based on their corresponding method 
signature as well as the information identifying its caller 
DUT. Fig. 7 provides an example of DUT file contents for 
the after m0 is invoked. Once m0 has been replayed, we use 
Dif, the differencing mechanism, to compare the spost of m0 
generated during Replay with the carved spost of m to 
determine whether the changes in m0 resulted in a 
behavioral difference. Currently, we have fully automated 
the differencing functions on return values, instance fields, 
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state fingerprints, and complete XML state encodings which 
include static fields. 
If Replay fails for m0, the ReplayAnomalyHandler will 
begin the process of exploring the replayable frontier of m0. 
The current implementation to explore the frontier can use 
call graphs or the DUTs built-in caller information to guide 
the replay process in the presence of an anomaly. These two 
mechanisms trade carving efficiency for replay efficiency. 
Keeping track of the DUT caller information requires an 
additional tracking method within ContextFactory that 
maintains a DUT call stack which increases carving 
overhead and storage per DUT. However, such information 
often leads to a more precise determination of what DUT 
needs to be replayed in the presence of a replay failure, 
which can cut down replay time. Each generated DUT is 
composed of two files: prestate, which includes the objects 
reachable through the method’s parameters or the class 
fields, and poststate, which contains the reachable objects 
and return value for the method. DUTs are organized 
through a directory structure of four levels that includes a 
level for system tests, a level for classes, a level for methods, 
and one for DUTs. The DUTs are assigned an identification 
hashcode based on their corresponding method signature as 
well as the information identifying its caller DUT. Fig. 7 
provides an example of DUT file contents for the method 
edit Height of the class Student and illustrates the DUT 
naming scheme described above. 
 
4.2 Implemented Projections 
Here, we describe the types of projections implemented in 
the CR tool. These offer a degree of control over the carved 
test cases that can be generated. Interface k-bounded 
reachable projection. The interface k-bounded reachable 

projection for a method invocation ;  defines 
the set of preserved objects to include only those reachable 
from the target method class via dereference chains of length 
up to k, i.e., 

 The intuition behind this projection is that DUTs that have 
identical heap structure up to depth k may exercise m in a 
similar manner and this could lead to significant filtering 
(e.g., a method working on link lists may only need to access 
the first k elements in a list to exhibit all of its interesting 
behavior). Using small values of k can greatly reduce the 
size of the recorded prestate and, in turn, this can lead to 
more DUTs being judged equivalent. For many methods, a 
small value of k will have no impact on unit-test robustness. 
For example, a value of 1 would suffice for a method whose 
only dereferences are accesses to fields of this. If a method 
changes to access data along a reference chain of length 
greater than the k set during carving, then the DUTs carved 
using the k-bounded projection would have retained 
insufficient data about the prestate to allow replay. Our 
implementation dynamically detects this situation and raises 
a custom exception to indicate a replay anomaly. During 
state storage, the heap is traversed and objects that are 
referenced at a depth of k +1, but no shallower, are marked. 
For each such marked objects, a sentinel attribute is 
introduced into the prestate XML encoding. When the 
prestate is deserialized, every object created from XML with 
a sentinel attribute is added to a Collection. Instrumentation 

is added after all GETFIELD instructions to check for the 
membership of the requested object in the Collection. If the 
object is a member, the instrumentation throws a 
SentinelAccess Exception. This prevents 
NullPointerExceptions from being thrown during sentinel 
object accesses which could be confused with normal 
application exceptions. It also prevents invalid replay results 
which would be caused by a program handling a null value 
and continuing execution when the value would not 
normally have been null. These SentinelAccessExceptions 
are one mechanism for identifying replay anomalies and 
triggering the ReplayAnomalyHandler. 
May-reference reachable projection. The may-reference 
reachable projection uses a static analysis that calculates a 
characterization of the objects that may be referenced by a 
method activation either directly or through method calls. 
This characterization is expressed as a set of regular 

expressions of the form: 1.... ( )?npf f F   which captures an 

access path that is rooted at a parameter p and consists of n 

dereferences by the named fields if (e.g., p.next. next.val). 

If the analysis calculates that the method may reference an 
object through a dereference chain of length greater than n, 
the optional final term is included to capture objects that are 
reachable from the end of the chain through dereference of 
fields in the set F. In general, F is calculated on a per-type 
basis whereF(c) is the subset of fields of class c that may be 
referenced by an execution of the method. 

 Let ' '
( ( ))( ) { . ( )}F f F class oreach o o O f address o    

capture reachability restricted to the subset of fields encoded 
in F; reachf denotes reachability for the singleton set {f}. For 

a regular expression of the form p 1........ mf f , where m   

n, we construct the 

set: 1 1( ) .... (...( ( )))f fm freach p reach reach p  , since 

we want to capture all references along the path. If the 

regular expression ends with the term F  , then we union an 
additional term of the form 

1( (...( ( ))))F fm freach reach reach p . 

This projection can reduce the size of carved prestates while 
retaining arbitrarily large heap structures that are relevant to 
the method under test. We implement our projection using 
the context-sensitive interprocedural read-write analysis 
implemented in Indus [47]. This analysis handles all of the 
complexities of Java in its alias analyses including the safe 
approximation of readwrite operations performed in 
libraries. We configure this analysis to calculate l-bounded 
access path and then generate regular expressions that 
capture the set of all possible referenced access paths up to 
length l; we use a default of l=2.When traversing the 
program for serialization using XStream, we simultaneously 
keep track of all regular expressions and mark only those 
objects that lie on a defined access path for storage in XML. 
Note that the lbounding controls the precision of the static 
analysis and does not limit the depth of the prestate carving, 
consequently no sentinel objects are introduced with this 
projection. This analysis is also capable of detecting when a 
method is side-effect free and in such cases the storage of 
poststates is skipped since method return values completely 
define the effect of such methods. 
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 Touched-carving projection. The touched-carving 
projection utilizes dynamic information about all the fields 
that were read or written during the method execution (or the 
execution of methods called from that target method) to 
decide which parts of the program states to store. Our 
implementation of this projection starts with the 
instrumentation utilized by the interface k-bounded 
reachable projection, and it incorporates additional 
instrumentation to mark the parts of the heap referenced by 
the instrumented methods. During carving, the additional 
instrumentation helps to identify referenced fields and stores 
them. Fields that are not referenced are stored up to depth of 
k to ensure a level of robustness in the event of method 
changes that result in references to additional fields. There 
are two implementation aspects of this projection worth 
mentioning. First, given that we cannot know which fields 
will be read or written to prior to the execution of a method, 
we first store the method’s complete spre in memory, then 
execute an instrumented version of the method that records 
all referenced fields for storage in the DUT.  
This record is then used to write the XML structure or 
fingerprint to disk. Second, DUTxm’s spre needs to store the 
fields referenced by m and also the fields referenced by all 
the methods m calls. To do this, we maintain object graphs 
during carving. Fig. 8 illustrates how this works for the class 
Person when a call to checkGrowth is made. The gray areas 
indicate fields that were referenced either directly or 
indirectly by the method. Fields in light gray were read, 
Light gray indicates read items and dark gray indicates 
written items. fields in dark gray were written, and fields in 
both were read and written. In the method checkGrowth, the 
field check is both read and written in the first line. The 
fields w, h, w:value, and h:value are read indirectly through 
calls to isTaller and isHeavier. 
Clustering projection. The clustering projection attempts to 
identify a set of similar DUTs, like DUTxcallee;1; 
DUTx!callee;2; . . . , that result from the repeated invocation 
of callee from within the same DUT, DUTxcaller, of method 
caller. Fig. 9 illustrates an instance where this projection 
may be very effective. Every invocation of printbook results 
in a DUTxprintbook and one DUT for incIndex for each 
iteration of the while loop, i.e., length DUTsxincIndex. 
Consequently, there may be many DUTs generated for 
incIndex and the added value of those DUTs may be limited. 
Instead of carving such DUTs, through the clustering 
projection, we keep track of the number of invocations of 
incIndex from the context defined by DUTxprintBook. 
When that number exceeds a predetermined threshold, we 
replace the incIndex DUTs with a reference to  DUT x 
printbook which enables their indirect replay. 
This projection amounts to a heuristic for identifying a 
replay frontier and exploiting that frontier to filter DUTs 
lower in the call hierarchy. Normalizing transient data. 
Projections seek to retain relevant differences between states 
while eliminating data that is regarded as irrelevant. It is 
possible to eliminate differences, without eliminating data by 
normalizing values, for example, setting all java.util.Date 
fields to a fixed value, or fixing the seed in 
java.util.Random. In most Java programs, there are wealth of 
data types that have transient data. We have identified a 
number of those types and applied normalizing value 
transformations. For example, autoflushing Flushable 

implementations can be flushed at different times and 
differences in the contents of the backing Buffer objects, 
char[]s or byte[]s can occur under normal circumstances. To 
normalize buffer array contents, we check for Flushable 
types and Buffer types before serialization. If a Flushable 
type is found, the flush method is called, if a Buffer type is 
found, the clear method is called. Since the implementations 
for flush and clear do not truly clear the backing array (they 
just reinitialize a pointer), we use reflection to get all fields 
with type char[] or byte[] and overwrite them with zeros. 

 
Fig. 8. Touched-carving projection. 

  
 

 
Fig. 9. A filtering strategy based on a caller’s context. 

 Then, serialization continues as normal. This 
process guarantees that variable buffer contents are 
consistent across all poststates of multiple executions. 
 
4.3 Toolset Limitations 
The current CR toolset is robust in its support of the Java 
language and commonly used libraries and frameworks, but 
it has two limitations. Threading limitations. Our toolset was 
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originally developed for sequential programs and the 
instrumentation strategy we employ in the Carver is not 
thread safe. Rather than employ a basic locking strategy in 
instrumentation to assure thread-safety, we have deferred the 
treatment of thread-safety to pursue a more complex and 
potentially more efficient solution that avoids locking 
overhead in accessing Carver data structures. We note that, 
for replay, thread safety is not an issue. Serialization 
limitations. Our approach requires the ability to save and 
restore object data representing the program state. However, 
the Java java.io.Serializable interface limits the type of 
objects that can be serialized. For example, Java designates 
file handler objects as transient (nonserializable) because it 
reasonably assumes that a handler’s value is unlikely to be 
persistent and restoring it could enable illegal accesses. The 
same limitations apply to other objects, such as database 
connections and network streams. In addition, the Java 
serialization interface may impose additional constraints on 
serialization. 
For example, it may not serialize classes, methods, or fields 
declared as private or final in order to avoid potential 
security threats. Fortunately, we are not the first to face these 
challenges. We found multiple serialization libraries that 
offer more advanced and flexible serialization capabilities 
with various degrees of customization. We ended up 
choosing the XStream library [46] because it comes bundled 
with many converters for nonserializable types and a default 
converter that uses reflection to automatically capture all 
object fields, it serializes to XML which is more compact 
and easier to read than native Java serialization, and it has 
built-in mechanisms to traverse and manage the storage of 
the heap which was essential in implementing the 
projections. In cases where XStream support was 
insufficient, we developed custom extensions such as the one 
mentioned before that enables the serialization of static 
fields. We anticipate that further extensions and 
customizations will accommodate other special object types.  
Scope limitations. 
Our toolset captures a large part of the program state 
relevant to a calling context, but it does not capture all of it. 
We do not capture public variables declared by other classes 
that are not reachable from the target method class. This 
implicit projection may cause false replay differences, but it 
is necessary to avoid bulky and inefficient DUTs. In 
addition, we do not capture fields declared static final since 
they cannot be restored during deSerialization. However, we 
note that such fields are often initialized to fixed values that 
are consistent across executions, limiting their influence in 
post state differences. 
 
Section 5: 
EMPIRICAL STUDY 
The goal of the study is to assess execution efficiency, fault 
detection effectiveness, and robustness of DUTs. We will 
perform such assessment through the comparison of system 
tests and their corresponding carved unit test cases in the 
context of regression testing. Within this context, we are 
interested in the following questions:  
RQ1. Can DUTs reduce regression testing costs? We would 
like to compare the cost of carving and reusing DUTs versus 
the costs of utilizing regression test selection techniques that 
work on system test cases.  

RQ2. What is the fault detection effectiveness of DUTs? 
This is important because saving testing costs while reducing 
fault detection is rarely an enticing tradeoff. 
RQ3. How robust are the DUTs in the presence of software 
evolution? We would like to assess the reusability of DUTs 
on a real evolving system and examine how different types 
of change can affect the robustness and sensitivity of the 
carved tests. 
 
5.1 Regression Test Suites 
Let P be a program, let P’ be a modified version of P, and let 
T be a test suite developed initially for P. Regression testing 
seeks to test P’. To facilitate regression testing, test 
engineers may reuse T to the extent possible. In this study, 
we considered five types of test regression techniques, two 
that directly reuse with system tests (S) and three that reuse 
the DUTs carved from the system test suite (C). S-retest-All. 
When P is modified, creating P’, we simply reuse all 
runnable test cases in T to test P0; this is known as the retest-
all technique [33]. It is often used in industry [35] and as a 
control technique in regression testing experiments. S-
selection. The retest all technique can be expensive: 
rerunning and rechecking the outcome of all test cases may 
require an unacceptable amount of time or human effort. 
Regression test selection techniques [21], [26], [34], [41] use 
information about P, P’, and T to select a subset of T, T’, 
with which to test P0. We utilize the modified entity 
technique [26], which selects test cases that exercise 
methods, in P, that 1) have been changed in producing P’ or 
2) use variables or structures that have been deleted or 
changed in producing P’. C-selection-k. Similar in concept 
to S-selection, this technique executes all DUTs, carved with 
a k-bounded reachable projection, that exercise methods that 
were changed in P’. This technique follows the conjecture 
that deeper references are often not required for replay, so 
bounding the carving depth may improve the CR efficiency 
while maintaining a DUT’s strengths. Within this technique, 
we explore depth bounding levels of 1, 5, and 1 (unlimited 
depth which corresponds to the interface reachable 
projection). C-selection-mayref. Similar to C-selection-k 
except that it carves DUTs utilizing a may-reference 
reachable projection. This technique is based on the notion 
that a program change will mostly affect the parts of the 
heap reachable by the method under test or by the methods 
invoked by the method under test. C-selection-touched. 
Similar to C-selection-k except that it carves DUTs utilizing 
a touched-carving projection. This technique is based on the 
idea that modifications to the program are more likely to 
affect parts of the heap actually touched in the process of 
invoking the method under test. The touched-carving 
projection here is bounded to a depth of at least 1 so that the 
generated DUTs store at least all fields of primitive types. 
5.2 Measures 
Regression test selection techniques achieve savings by 
reducing the number of test cases that need to be executed on 
P’, thereby reducing the effort required to retest P’. We 
conjecture that CR techniques achieve additional savings by 
focusing on some methods of P0. In other words, while 
system test case selection identifies the relevant test cases, 
CR adds another orthogonal dimension by identifying what 
methods are relevant. To evaluate these effects, we measure 
the time to execute and the time to check the outputs of the 
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test cases in the original test suite, the selected test suite, and 
the carved selected test suites. For a carved test suite, we 
also measure the time and space to carve the original DUT 
test suite. By default, we applied the default lossless filter on 
all DUT test suites so that DUTs with unique prestates are 
kept for each program method. One potential cost of 
regression test selection is the cost of missing faults that 
would have been exposed by the system tests prior to test 
selection. Similarly, DUTs may miss faults due to the type of 
change that render a DUT unexecutable or to the use of 
projections aimed at improving carving efficiency. We will 
measure fault detection effectiveness by computing the 
percentage of faults found by each test suite. We will also 
qualify our findings by analyzing instances where the 
outcomes of a carved test case are different from its 
corresponding system test case. To evaluate the robustness 
of the carved test cases in the presence of program changes, 
we are interested in considering three potential outcomes of 
replaying aDUTxm on unit m0: 
 1) fault is detected, DUTxm causes m’to reveal a behavioral 

differences due to a fault; 
 2) false difference is detected, DUTxm causes m’ to reveal a    

behavioral change from m to m0 that is not a fault (not 
captured by stx) 

3) test is unexecutable, DUTxm is ill-formed with respect to 
m0.  

 
TABLE 1 
Siena’s Component Attributes 

 
 
Tests may be illformed for a variety of reasons (e.g., object 
protocol changes internal structure of object changes, 
invariants changes) and we refer to the degree to which a test 
set becomes ill-formed under a change as its sensitivity to 
change. We assess robustness by computing the percentage 
of carved tests and program units falling into each one of the 
outcomes. Since the robustness of a test case depends on the 
change, we qualify robustness by analyzing the relationship 
between the type of change and sensitivity of the DUTs. 
 
5.3 Artifact 
The artifact we will use to perform this experiment study is 
Siena [25]. Siena is an event notification middleware 
implemented in Java. This artifact is available for download 
in the Subject Infrastructure Repository (SIR) [30], [40]. SIR 
provides Siena’s source code, a system-level test suite with 
503 unique test cases, multiple versions corresponding to 
product releases, and a set of seeded faults in each version 
(the authors were not involved in this latest activity). For this 
study, we consider Siena’s core components (not the 
application included in the package that is built with those 
components). We utilize the five versions of Siena that have 
seeded faults that did not generate compilation errors (faults 
that generated compilation errors cannot be tested) and that 
were exposed by at least one system test case (faults that 

were not found by system tests would not affect our 
assessment). For brevity, we summarize the most relevant 
information to our study in Table 1 and point the reader to 
SIR [31] to obtain more details about the process employed 
to prepare the Siena artifact for the empirical study. Table 1 
provides the number of methods, methods changed between 
versions and covered by the system test suite, system tests 
covering the changed methods, and faults included in each 
version. It also provides the number of physical source lines 
of code (SLOC) which was obtained using the wc utility. 
 
5.4 Study Setup and Design 
The activities in this study were performed on an Opteron 
250 processor, with 4 Gbytes of RAM, running Linux-
Fedora, and Java 1.5. The overall process consisted of the 
following steps as shown in Fig. 10. First, we prepare the 
base test suites, System tests, C _ k_, C-mayref, and C-
touched. The preparation of the system-level test suite was 
trivial because it was already available in the repository. 

 
Fig. 10. Study process. 

 
The preparation of the carved selection suites, required us to 
run the CR tool to carve all the DUTs for all the methods in 
v’ executed by the system tests. Once the base test suites 
were generated, we performed test selection for each version, 
as described in Section 5, to obtain S-retest-all, S-selection, 
C-selection-k_, C-selection-mayref, and C-selection-
touched. Second, we run each generated test suite on the 
fault-free versions of Siena to obtain an oracle for each 
version. For the system tests, the oracle consisted of the set 
of outputs generated by the program. For the carved tests, 
the oracle consisted of the method return value and the 
relevant spost. 
Third, we run each test suite on each faulty instance of each 
version (some versions contained multiple faults) and 
recorded their execution time. We dealt with each fault 
instance individually to control for potential masking effects 
among faults that might obscure the fault detection 
performance of the tests. Fourth, for each test suite, we 
compared the outcome of each test case between the fault-
free version (oracle) and the faulty instances of each version. 
To compare the system test outcomes between correct and 
faulty versions, we used predefined differencing functions 
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that are part of our implementation which ignore transient 
output data (e.g., dates, times, and random numbers). For the 
DUTs, we performed a similar differencing, but applied to 

the target method return values and posts . When the outcome 

of a system test case differed between the fault-free and the 
faulty version, a fault is said to be found. For the differences 
on the carved tests, we performed a deeper analysis to 
determine whether the observed behavioral differences 
correspond to faults. Last, we compared all measures 
introduced in Section 4.2 across the test suites generated by 
S-retest-all, S-selection, C-selection-k_, C-selection-mayref, 
and C-selection-touched. We then repeated the same steps to 
collect data for the same techniques when utilizing an of-the-
shelf compression package to reduce the size of the spre. The 
results emerging from this comparison are presented in the 
next section. 
TABLE 2 
Carving Times and Sizes to Generate Initial DUT Suites 
 

 
 
5 Results: 
In this section, we provide the results for each research 
question regarding carving and replaying efficiency, fault 
detection effectiveness, and robustness and sensitivity of the 
DUT suites. 
RQ1: Efficiency. We first focus on the efficiency of the 
carving process. Although our infrastructure completely 
automates carving, this process does consume time and 
storage so it is important to assess its efficiency as it might 
impact its adoption and scalability. Table 2 summarizes the 
time (in minutes) and the size (in megabytes—MB) that it 
took to carve and store the complete initial suite carved from 
v’ of approximately 20,000 DUTs utilizing the different CR 
techniques with and without the use of compression on the 

pres and posts
 
In the first row of Table 2, we observe that, 

for Siena, constraining the carving depth barely affects the 
carving time. However, we see that constraining the carving 
depth can greatly reduce the required space, as carving at k 
=1 requires 47 percent of the space required for carving with 
infinite depth. Observe that for depths greater than 1, the 
differences in storage space are small due to the rather 
“shallow” nature of the artifact (dereference chains with 
length greater than 2 are rare in Siena). C-select-mayref 
carving required additional time because of the extra static 
analysis performed up front, but consumed 55 percent of the 
space. Utilizing the touched-carving projection resulted in 
space requirements averaging those of k = 1 and k= . 
Compressing the stored DUTs with the open source utility 
bzip provided space savings of 99.7 percent when carving at 
unlimited depth, but added 4-8 minutes over the whole test 
suite carving process. 

The last two rows of Table 2 reveal that 69 percent of the 
DUTs carved at k =1 contained sentinels while only 3 
percent of the DUTs carved at a k =5 contained sentinels. 
The differences in sentinels mean that deeper differences in 
the heap are more often obscured by using k = 1, which 
explains why filtering is more effective on the smaller space 
captured by k =1. The touched suite size and carving costs 
resemble those of k = 1, while the mayref size and costs fit 
in between those of k = 1 and k = 5. It is important to note 
that the carving numbers reported in Table 2 correspond to 
the initial carving of the complete DUT suite—DUTs carved 
for each of the methods in Siena from each of 503 system 
tests that may execute each method. Carving was performed 
automatically without the tester’s participation. As with 
regular unit tests, during the evolution of the system, DUTs 
will be replayed repeatedly amortizing the initial carving 
costs, and only a subset of the DUTs will need to be recarved 
(e.g., recarving the DUTs affected by the changes in v6 
would only require 2 percent of the original carving time). 
Recarving will be necessary when it is determined that 
changes in the program may affect a DUT’s relevant 
prestate. We now proceed to analyze replay efficiency. 
Replay efficiency is particularly important since, as with 
regular units tests, it is likely that a carved DUT will be 
repeatedly replayed as a method evolves while preserving its 
original intended behavior. Fig. 11 shows the time in 
minutes to execute the system regression test suites and to 
replay the C-selection-k1 suite (the most expensive of all 
carved suites). Each observation corresponds to the replay 
time of each generated test suite under each version, while 
the lines joining observations are just meant to assist in the 
interpretation. 

 
Fig. 11. Test suite execution times for system test suites 
and C-selection-k1 (with and without compression). 
 
Replaying the C-selection-k1provides gains of at least an 
order of magnitude over the S-select suites, averaging less 
than a minute per version. On average, replaying carved 
suites take 2 percent of the time required by S-retest-all, and 
3 percent of the time required by S-select. Utilizing 
Cselection- k1-comp incurs a large overhead to uncompress 
the DUTs content, rendering its application unlikely in spite 
of the storage savings. The test suite resulting from the S-
retest-all technique consistently averages 43 minutes per 
version. The test suites resulting from S-select averages 28 
minutes across versions, with savings over S-retest-all 
ranging from barely a minute in v7 to a maximum of 41 
minutes in v6.1  
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We also measured the doffing time required by all 
techniques. For the system test suites the doffing times were 
consistently less than a minute, and for the 

1. Factors that affect the efficiency of this technique 
are not within the scope of this paper but can be 
found in [48]. 

2. C-selection_ suites the time never exceeded 15 
seconds, making both negligible compared with the 
replay time. 

 

 
Fig. 12. Test suite execution times for the C-selection-k_ 

suites. 
              Fig. 12 summarizes the replay execution times for 
some of the other test suites we generated. We find that, on 
average, all the C-selection_ suites (excluding the one with 
compression) replay execution time was less than 1 minute. 
They all took less than 10 seconds to replay v6 and up to 96 
seconds to replay the DUTs selected for v1. Constraining the 
carving depth with k = 1 consistently reduced replay time 
(over percent 50 reduction in v5). Similarly, constraining the 
carving space through either C-selection-mayref or C-
selection-touched reduced the replay time in some versions 
(almost 20 percent reduction in v1). 
RQ2: Fault detection effectiveness. Most of the test suites 
carved from S-selection, (with k_1), C-selectionmayref, and 
C-selection-touched detected as many faults as the S-retest-
all technique. This indicates that a DUT test suite can be as 
effective as a system test suite at detecting faults, even when 
using aggressive projections. It is worth noting, however, 
that computing fault detection effectiveness over a whole 
DUT suite overlooks the fact that, for some system tests, 
their corresponding carved DUTs may have lost or gained 
fault detection effectiveness. We conjecture that this is a 
likely situation with our artifact because many of the faults 
are detected by multiple system tests, so there were many 
carved DUTs that could have detected each fault. To address 
this situation, we perform an effectiveness analysis at the test 
case level. For each carving technique we compute: 1) PP, 
the percentage of passing selected system tests (selected 
utilizing S-Selection) that have all corresponding DUTs 
passing, and 2) FF, the percentage of failing system tests that 
have at least one corresponding failing DUT. Table 3 
presents the PP and FF values for the suites under all faults 
in each version. In general, we observe that most PP and FF 
values are over 90 percent indicating that DUTs carved from 
a system test case tend to preserve much of their 
effectiveness. But, we can also identify some interesting 
exceptions. For example, independent of the DUT suite, for 
v7: f1 (the first fault in version v7), only 24 percent of the 

passing system tests had all their associated DUTs passing. 
The rest of the system tests had at least one DUT that 
detected a behavioral difference that was not detected by the 
system test case oracle because it did not propagate to the 
output (the level at which the system test case oracle 
operated). This is one example where a DUT is more 
powerful than its corresponding system test. Another 
interesting instance is FF for C-selection-k1, v5, where we 
observed that replaying the carved test suite did not detect 
any of the behavioral differences exhibited by the selected 
system test cases. Upon further examination, we found that 
the changed method in v5 required access to references in 
the heap deeper than k = 1 which were not satisfied by the 
captured prestate of the C-selection-k1 suite, therefore 
resulting in SentinelAccessException. 
Because of this, no poststates were stored for the method and 
the fault goes undetected. The other carved test suites on v5 
did detect the fault since they either carved deeper prestates 
or, in the case of the touched-carving projection test suite, 
carved the parts of the prestates that were necessary for the 
methods under test. Still, for the other suites on v5, 3 out of 
the 300 failing system tests did not have any corresponding 
DUT on the changed methods failing (99 percent). We 
observed a similar situation in v7: f2 where 18 out of 203 
DUTs (9 percent) did not expose behavioral differences even 
though the corresponding system tests failed. When we 
analyzed the reasons for this reduction in FF, we discovered 
that in both cases the tool did not carve in v0 the prestate for 
one of the changed methods because the system test case did 
not reach them;  
TABLE 3 
Fault Detection Effectiveness 

 
TABLE 4 
Robustness and Sensitivity 

 
 
call graphs generated for the system test cases indicate that 
the faulty methods were not invoked during the execution of 
some of the system test cases on v’ of Siena. Changes in the 
code structure (e.g., addition of a method call), however, 
made the system test cases reach those changed methods 
(and expose a fault) in later versions. In both circumstances, 
improved DUTs that would have resulted in 100 percent FF 
could have been generated by recarving the test cases in later 
versions (carve from vi instead of v’ to replay in viþ1). 
More generally, these observations point out again for the 
need for mechanisms to detect changes in the code that 
should trigger recarving. 
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RQ3: Robustness and sensitivity. We examined how DUTs 
obtained through C-selection-k1 are quite fragile in terms of 
their executability, and how certain code changes may make 
a method reach a new part of the heap that was not originally 
carved. We further evaluate the robustness 
and sensitivity of DUTs by comparing their performance in 
the presence of methods that changed but are not faulty and 
in the presence of methods that changed and are indeed 
faulty. We performed such detailed comparison on the suites 
generated with C-selection-k1. Table 4 summarizes the 
findings and we now briefly discuss distinct instances of the 
scenarios we found. 
In both faulty instances of v7, the version with the most 
methods changed (10), none of the DUTs revealing 
behavioral differences were found by methods other than the 
faulty ones.  
This is clearly an ideal situation, which is also present in v6. 
V1: f3 represents perhaps a more common case where 15 
percent of the DUTs going through nonfaulty changed 
methods detected differences, but 100 percent of the DUTs 
traversing faulty methods actually revealed a poststate 
difference. V 1 : f2 presents a scenario in which carving 
generates more behavioral differences for the nonfaulty 
changed methods than for the faulty changed methods, 
showing that even for correct changes the number of affected 
DUTs may be large (13 out of 65). In this case, the 
implementation change was such that the method switched 
the order of division and multiplication operations involving 
a variable which was eventually returned. Because of this, 
there was a difference in the return value, which was 
detected as a behavioral difference, and would probably be 
detected by other forms of unit tests as well. 
It is worth noting that the differencing functions offer an 
opportunity to control this problem. For example, a more 
relaxed differencing mechanism focused on just return 
values could have detected the fault while reducing the 
number of false differences if the fault manifests itself in the 
return value. Mechanisms to select and appropriately 
combine these differencing functions will be important for 
the robustness and sensitivity of DUTs. In addition, we 
anticipate that as the CR components of the framework 
become parts of an IDE, the additional change information 
available in the developer’s environment could help to 
reduce the number of false positives. For example, code 
modifications due to refactoring that do not affect the target 
unit’s interface would be expected to retain the same 
behavior. However, changes that can be mapped to the bug 
repository would be expected to affect the unit’s behavior. 
5.6 Targeted Case Studies 
The previous study addressed the stated research questions 
with respect to Siena, and we believe the findings generalize 
to similar artifacts. Still, we realize that our study suffers 
from threats to validity. Specifically, the selected artifact 
provided limited exposure to CR in the presence of deeper 
heap structures, extensive software changes, and high 
number of methods invocations. We have started to address 
those threats to the validity of our findings by investigating 
the performance of CR in the presence of such settings. 
 More specifically, we have studied the performance 
of CR on two other artifacts, NanoXML and Jtopas [30], that 
provide exposure to more complex heap structures, 
highfrequency executions sequences, and extensive changes 

between versions. These studies confirm our previous 
findings, but also show that the performance of the different 
carving strategies can vary significantly in programs with 
complex heap structures, that the Replay AnomalyHandler 
can enhance DUTs reuse and potential for fault detection 
with affordable replay costs, and that the clustering 
projection can be very effective to reduce the number of 
DUTs on high-frequency methods. Due to space constraints, 
the detailed settings and results are omitted here but 
available in a technical report [28]. 
 
Section 6:RELATED WORK 
Our work was inspired by Weide’s notion of modular testing 
as a means to evaluate the modular reasoning property of a 
piece of software [49]. Although Weide’s focus was on the 
evaluation of the fragility of modular reasoning, he raised 
some important questions regarding the potential 
applicability of what he called a “modular regression 
technique” that led to our work. Within the context of 
regression testing, our approach is similar to Binkley’s 
semantic guided regression testing in that it aims to reduce 
testing costs by running a subset of the program [21], [22]. 
Binkley’s technique utilizes static slicing to identify 
potential semantic differences between two versions of a 
program. He also presents an algorithm to identify the 
system tests that must be run on the slices resulting from the 
differences between the program versions. 
The fundamental distinction between this and our approach 
is that we do not run system-level tests, but rather smaller 
and more focused unit tests. Another important distinction is 
that our targets are not the semantic differences between 
versions, but rather methods in the program. The preliminary 
results from our original test carving prototype [38] 
evidenced the potential of carved tests to improve the 
efficiency and the focus of a large system test suite, 
identified challenges to scale up the approach, and pinpoint 
scenarios under which the carved test cases would and would 
not perform well. We have built on that work by presenting a 
generic framework for differential carving, extending the 
type of analysis we performed to make the approach more 
scalable, and by developing a full set of tools that can enable 
us to explore different techniques on various programs. We 
are aware of other research efforts related to the notion of 
test carving. First, Orso and Kennedy’s and Clause et al.’s 
notion of selective capture and replay of program executions 
[36]. Orso and Kennedy’s technique [36] aims to selectively 
capture and replay events and interactions between the 
selected program components and the rest of the application. 
The technique captures a simplified state representation 
composed of the object IDs, types, and scalar values directly 
utilized by the selected program components to enable 
replay. The approach is similar to carving with a touched 
projection with the difference that simplified heap structures 
are used to represent the program state. Second, the test 
factoring approach introduced by Saff and Ernst takes a 
similar approach to Orso’s with the creation of mock objects 
that serve to create the scaffolding to support the execution 
of the test unit [43]. The same group introduced a tool set for 
a fully featured Java execution environments that can handle 
many of the subtle interactions present in this programming 
language (e.g., callbacks, arrays, and native methods) [42]. 
Saff et al.’s work [34] carves a method test case by recording 
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the sequence of calls that can influence the method, the 
sequence of calls made by the method, and the return values 
and unit state side effects of those calls. In our framework, 

this would amount to calculating __ such that ( )s  = pres for 

the method of interest and then calculating summarizing 
traces __calli that reflect the return value and side effects for 
each call out of the method and carving pres , the relevant 

prestate for each call. During replay, the same sequence of 
calls with the same parameters is expected—any deviation 
results in areport of a differenceduring replay. In our 
framework, we would identify the points at which the n calls 
out of the method occur as poststate locations to define a 

DUT of the form 1 1(( ..... ), , ( ,..... ))j pre post posths s s  . The 

approaches introduced by Orso et al. and Saff et al. are 
action-based approaches that capture the interactions 
between the target unit and its context and then build the 
scaffolding to replay just those interactions. Hence, they do 
not incur in costs associated with capturing and storing the 
system state for each targeted unit. On the other hand, these 
approaches are likely to generate inefficient unit tests in the 
presence of long-running system tests and they may generate 
tests that are too sensitive to simple changes that do not 
effect meaning of the unit (e.g., changing the order of 
independent method calls). Saff et al. have identified this 
issue and propose to analyze the life span of the factored test 
cases across sequences of method modifications [42]. 
This is a critical factor in judging the cost-effectiveness of 
CR testing, and we have started to study it in Section 4.5. In 
terms of our framework, both of these approaches would be 
considered action-based CR approaches. We have presented, 
what is to the best of our knowledge, the first statebased 
approach to CR testing. More recently, Xu et al. have 
proposed a hybrid approach that mixes action based with 
state based to enhance replay efficiency [50]. The approach 
only captures the set of runtime values required to reach a 
checkpoint and the values that could potentially be required 
to complete execution after the checkpoint. The set of 
runtime values required is obtained by computing the slice of 
the program required to generate those values (similar to 
action based). The set of values that could be required to 
complete execution is computed by walking the heap 
(similar to state based). In our framework, such a test could 

be defined by calculating traces control  control leading to 

checkpoint pres and a number of states 1posts corresponding 

to the method return points. This would result in a DUT of 

the form 1 1(( ..... ), , ( ,..... ))j pre post posths s s  where j is 

the number of relevant subtraces that lead to the checkpoint 
stack and h is the number of states that affect the 
postcheckpoint program execution. 
All of these related efforts have shown their feasibility in 
terms of being able to replay tests and Saff et al.’s and Xu et 
al.’s approaches have provided initial evidence that they can 
save time and resources under several scenarios. None of 
these approaches, however, has been evaluated in terms of 
its fault detection effectiveness which ultimately determines 
the value of the carved tests, or in the context of regression 
testing. Our work also relates to efforts aimed at developing 
unit test cases. Several frameworks grouped under the 

umbrella of Xunit have been developed to support software 
engineers in the development of unit tests. JUnit, for 
example, is a popular framework for the Java programming 
language that lets programmers attach testing code to their 
classes to validate their behavior [31]. There are also 
multiple approaches that automate, to different degrees, the 
generation of unit tests. For example, commercial tools such 
as Jtest, developed by a company called Parasoft, develop 
unit test cases by analyzing method signatures and selecting 
test cases that increase some coverage criteria [51]. Some of 
these tools aim to assess software robustness (e.g., whether 
an exception is thrown [52]). Others utilize some type of 
specification such as pre and postconditions or operational 
abstractions, to guide the test case generation and actually 
check whether the test outcome meets the expectation results 
[23], [27], [37], [45]. Interestingly enough, a part of JTest 
called JTest Tracer can be used to monitor a deployed 
application in real time and capture inputs to generate 
realistic JUnit test cases [51], a process somewhat similar to 
carving. Although carving also aims to generate unit test 
cases, the approach we propose is different from previous 
unit test case generation mechanisms since it consists of the 
projection of a system test case onto the targeted software 
unit. As such, we expect for carved unit tests to retain some 
of the interesting interactions exposed by systems tests. In 
general, such interactions are hard to design and are rarely 
included in regular unit test cases. As stated, the poststate 
differencing functions that regulate the detection of 
differences between encodings of unit behavior belongs to a 
larger body of testing work on differential-based oracles. For 
example, the work of Weyuker [44] on the development of 
pseudo-oracles, 
Jaramillo et al. [32] on using comparisons to check for 
optimization induced errors in compilers, or the comparison 
of program spectra [39] are instances of utilizing 
differencing-type oracles at the system or subsystem level. 
When focusing at the unit level of object-oriented programs, 
as we are doing, Binder suggests the term “concrete state” 
oracles, which aim to compare the value of all the unit’s 
attributes against what is expected [20]. Briand et al. referred 
to this type of oracle as a “precise” oracle because it was the 
most accurate one employed in their studies [24]. Overall, 
the notion of testing being fundamentally differential has 
long been understood [44], since the pseudo-oracles against 
which systems are judged correct are themselves subject to 
error. Thus, the question we aimed to answer is not whether 
our CR method judges a system correct or incorrect, but 
rather whether it is capable of cost-effectively detecting 
differences between encodings of system behavior that 
developers can easily mine to judge whether the difference 
reflects an error. 
 
CONCLUSION 
We have presented a general framework for automatically 
carving and replaying DUTs. The framework accommodates 
two types of state representation, and incorporates 
sophisticated projection, anomaly handling, and differencing 
strategies that can be instantiated in various ways to suit 
distinct trade-offs. We have implemented a state-based 
instance of the framework that mitigates testing costs 
through a family of reachability-based projections, that 
enhances DUT robustness through replay anomaly handlers, 
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and that can adjust the sensitivity of DUTs through 
differencing functions. Our evaluation of this 
implementation on Siena, NanoXML, and JTopas provides 
evidence that DUTs can be generated automatically from 
system tests, can provide efficiency gains of orders of 
magnitude while retaining most of the effectiveness of 
system tests in a regression testing context, and can be robust 
to program changes and scale to large and complex heap 
structures. The experiences gained while instantiating and 
assessing the framework suggest several directions for future 
work. 
First, we will perform further studies not only to confirm our 
findings on other artifacts under similar settings but also to 
compare DUTs with traditional unit tests developed by 
software engineers. We conjecture that software engineers 
develop rather shallow unit tests and that we can effectively 
complement those with DUTs that expose the target units to 
more complex execution settings. A longer-term direction is 
the exploration of other transformation techniques that 
utilize our current test representation. For example, we are 
investigating automated mechanisms that combine multiple 
DUTs to create an aggregated DUT for a larger program unit 
such as a class. This could be achieved by clustering 
multiple DUTs based on the identity of the receiver object, 
effectively transferring the effects of methods on the receiver 
object throughout the sequence, achieving a kind of 
interaction testing between calls. Ultimately, we envision a 
family of automated transformations of testing resources 
where carving is just one of those transformations. 
 
Applications 
Generating tests of different granularity. 
Unit test cases are focused and efficient. System tests are 
effective at exercising complex usage patterns. Differential 
unit tests (DUT) are a hybrid of unit and system tests. They 
are generated by carving the system components, while 
executing a system test case, that influence the behavior of 
the target unit, and then re-assembling those components so 
that the unit can be exercised as it was by the system test. 
DUTs retain some of the advantages of unit tests, can be 
automatically and inexpensively generated, and have the 
potential for revealing faults related to intricate system 
executions.  
 
Tool Support 
Features included: 
 Automatically carving DUTs from a running application  
 DUTs reductions and filtering projections (e.g. identical 

pre-state representations)  
 Ability to customize post-state output (simple hash for 

space savings, full state for easier analysis, etc.)  
 Customizable replay specifications for individual 

methods or sequence of methods  
 Anomaly replay handler (e.g., to replay caller of failed 

method or replayable frontier)  
 DUT to JUnit Translation 
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