
Modeling and Re-Employment of Differential Unit
Test Cases from System Test Cases

Dr. C.P.V. N. J. Mohan Rao , Nandagiri R G K prasad, Satya P Kumar Somayajula

CSE Department,Avanthi College of Engg & Tech, Tamaram, Visakhapatnam, Andhra Pradesh, India.

Abstract- In this project, developing effective suites of unit test cases
presents a number of challenges. Specifications of unit behavior are
usually informal and are often incomplete or ambiguous, leading to the
development of overly general or incorrect unit tests. This project will
investigate strategies for amplifying the power and applicability of
testing resources. The strategies will transform existing tests into new
tests that add complementary testing capabilities to the validation
process. The developed strategies will be unique in their treatment of
tests as data. This will require the development of test representations
that can be efficiently manipulated, and test transformations to realize
operations that generate new and valuable tests. We see Carving as the
first of our transformations, but many others will follow.

Keywords: Modeling, DUT’s, Unit Test cases, System Test Cases

1. INTRODUCTION:
An important component of Empirical Software Engineering
(ESE) research involves the measurement, observation,
analysis and understanding of software engineering in
practice. Results analyzed without understanding the
contexts in which they were obtained can lead to wrong and
potentially interpretation. Their exist several myths in
software engineering, most of which have been excepted for
years as being conventional wisdom without having been
questioned. In this talk we deal briefly with a few popular
mix in software engineering ranging from testing and static
analysis to distributed development and high light the
importance of context and generalization.
Our goal is to carve the behavior of a target unit or units
from a whole system execution. We capture components that
may influence the behavior of the targeted unit. Those
components are then automatically assembled into a test
harness that establishes the pre-state of the unit/s that was
encountered during system test execution. From that state,
the unit/s is replayed and the resulting state is queried to
determine if there are differences with the recorded unit
post-state.
SOFTWARE engineers develop unit test cases to validate
individual program units (e.g., methods, classes, and
packages) before they are integrated into the whole system.
By focusing on an isolated unit, unit tests are not constrained
or influenced by other parts of the system in exercising the
target unit. This smaller scope for testing usually results in
more efficient test execution and fault isolation relative to
full system testing and debugging [1], [12]. Unit test cases
are also key components of several development and
validation methodologies, such as extreme programming
(XP) [2], test-driven development (TDD) practices [3],
continuous testing and efficient test prioritization and
selection techniques. Developing effective suites of unit test
cases presents a number of challenges. Specifications of unit
behavior are usually informal and are often incomplete or
ambiguous, leading to the development of overly general or
incorrect unit tests. Furthermore, such specifications may
evolve independently of implementations requiring
additional maintenance of unit tests even if implementations

remain unchanged. Testers may find it difficult to imagine
sets of unit input values that exercise the full range of unit
behavior and thereby fail to exercise the different ways in
which the unit will be used as a part of a system. An
alternative approach to unit test development, which does
not rely on specifications, is based on the analysis of a unit’s
implementation. Testers developing unit tests in this way
may focus, for example, on achieving coverage-adequacy
criteria in testing the target unit’s code. Such tests, however,
are inherently susceptible to errors of omission with respect
to specified unit behavior and may thereby miss certain
faults. Finally, unit testing requires the development of test
harnesses or the setup of a testing framework (e.g., JUnit) to
make the units executable in isolation.
Software engineers also develop system tests, usually based
on documents that are available for most software systems
that describe the system’s functionality from the user’s
perspective, for example, requirement documents and user’s
manuals. This makes system tests appropriate for
determining the readiness of a system for release or its
acceptability to customers. Additional benefits accrue from
testing system-level behaviors directly. First, system tests
can be developed without an intimate knowledge of the
system internals, which reduces the level of expertise
required by test developers and makes tests less sensitive to
implementation-level changes that are behavior preserving.
Second, system tests may expose faults that unit tests do not,
for example, faults that emerge only when multiple units are
integrated and jointly utilized. Finally, since they involve
executing the entire system, no individual harnesses need to
be constructed. While system tests are an essential
component of all practical software validation methods, they
do have several disadvantages. They can be expensive to
execute; for large systems, days or weeks, and considerable
human effort may be needed for running a thorough suite of
system tests [15]. In addition, even very thorough system
testing may fail to exercise the full range of behavior
implemented by a system’s particular units; thus, system
testing cannot be viewed as an effective replacement for unit
testing. Finally, fault isolation and repair during system
testing can be significantly more expensive than during unit
testing.
The preceding characterization of unit and system tests,
although not comprehensive, illustrates that system and unit
tests have complementary strengths and that they offer a rich
set of trade-offs. In this paper, we present a general
framework for the carving and replaying of what we call
differential unit tests (DUTs) which aim to exploit those
trade-offs. We termed them differential because their
primary function is to detect differences between multiple
versions of a unit’s implementation. DUTs are meant to be
focused and efficient like traditional unit tests, yet they are
automatically generated along with a custom test-harness
making them inexpensive to develop and easy to evolve. In

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1202

addition, since they indirectly capture the notion of
correctness encoded in the system tests from which they are
carved, they have the potential for revealing faults related to
complex patterns of unit usage. In our approach, DUTs are
created from system tests by capturing components of the
exercised system that may influence the behavior of the
targeted unit and that reflect the results of executing the unit;
we term this carving because it involves extracting the
relevant parts of the program state corresponding to the
components exercised by a system test. Those components
are automatically assembled into a test harness that
establishes the prestate of the unit that was encountered
during system test execution.
From that state, the unit is replayed and the resulting state is
queried to determine if there are differences with the
recorded unit poststate. Ideally, a set of DUT will.

1. retain the fault detection effectiveness of system
tests on the target unit,
2. execute faster or use fewer resources than system
tests, and
3. be applicable across multiple system versions. In
addition, for program changes that are behavior
preserving, effective DUTs will
4. report few differences that are not indicative of
actual differences in system test results.

For changes that are intentionally behavior modifying, DUTs
will, of course, detect differences. Rather than simply
indicating that a difference is detected, our approach is able
to provide a fine-grained view of the differences through the
unit test outcomes. Using this information, developers will
be able to quickly spot the effect of their intended
modifications and to see where errors have been introduced.
 In this paper, we investigate DUT carving and
replay (CR) techniques with respect to the four numbered
criteria. Through a set of controlled empirical studies within
the context of regression testing, we compare the cost and
effectiveness of system tests and carved unit tests. The
results indicate that carved test cases can be as effective as
system test cases in terms of fault detection, but much more
efficient in the presence of localized changes. When
compared against emerging work on providing automated,
extraction of powerful unit tests from system executions,
[16], [18], the contributions of this paper are a framework
for automatically carving and replaying DUTs that accounts
for a wide variety of implementation strategies with different
trade-offs, a novel state-based automated instantiation of the
framework for CR at a method level that offers a range of
costs, flexibility, and scalability, and an empirical
assessment of the efficiency and effectiveness of CR of
DUTs on multiple versions of three Java artifacts. We note
that this paper is a revised version of an earlier paper
presented at the Foundations of Software Engineering
Symposium 2006 [11] that includes various framework
extensions presented in the next section, the testing part
described in section 1, key generation in section 2, a more
complete and detailed implementation presented in Section
3, and additional assessments described in Section 4.
Empirical study in Section 5, and related work in Section 6.
Generating Regression Unit Tests using a Combination of
Verification and Capture & Replay:

SECTION 1:
The combination of software verification and testing
techniques is increasingly unit tests and regression test
oracle. Hence, the two groups of techniques have
complementary strengths, and therefore are ideal candidates
for a tool-chain approach proposed in this paper. The first
phase produces, for a given system, unit tests with high
coverage. However, when using them to test a unit, its
environment is tested as well – resulting in a high cost of
testing. To solve this problem, the second phase captures the
various executions of the program, which are monitored by
the output of the first phase. The output of the second phase
is a set of unit tests with high code coverage, which uses
mock objects to test the units. Another advantage of this
approach is the fact that the generated tests can also be used
for regression testing. Testing techniques, in contrast, are
powerful for detecting software faults and for gaining some
degree of confidence that the program under test (PUT)
behaves correctly in its runtime environment. VBT
techniques use information gained from a verification
attempt and can generate much targeted tests to reveal
program faults or tests that exhibit high code coverage. Thus,
both verification and testing techniques can profit when
being combined. Yet, we can even go a step further in
combining both approaches. We found that more traditional
testing techniques have complementary strengths to VBT
techniques. One such technique is capture and replay (CaR),
whose strengths are the generation of isolated unit tests [13,
14] and regression test oracles [13, 17, 4].
 Unit testing plays a major role in the software
development process. A unit test explores a particular
behavior of the unit that is tested. The unit that we deal with
is a class. It explores a particular aspect of the behavior of
the class under test, hereafter CUT. Testing a unit in
isolation is an important principle of unit testing [10].
However, the behavior of the CUT usually depends on other
classes, some of them not even existing yet. Mock objects
[12] are used to solve this problem by replacing actual calls
to methods of other classes by calls that simply return the
required value, thus testing the unit in isolation.
Furthermore, in order to gain confidence in the test result the
test should have high code coverage. The maintenance phase
is the most expensive part of the software life cycle, and is
estimated to comprise at least 50% of the total software
development expenses [16]. Unit testing enables
programmers to re-factor code safely and make sure it
works. Extreme Programming [19] adopts an approach that
requires that all the software classes have unit tests; code
without unit tests may not be released. Whenever code
changes introduce a regression bug into a unit, it can quickly
be identified and fixed. Hence, unit tests provide a safety net
of regression tests and validation tests. This encourages
developers to re-factor working code, i.e., change its internal
structure without altering the external behavior [7]. Research
related to regression testing often focuses on test selection
and test prioritization techniques, e.g. [9, 11]. The focus of
this paper is different.
 We exploit the synergies of combining VBT and
CaR tools for unit regression testing. We propose an
approach for the automatic generation of unit and regression
tests in the context of verification. Our goal is to improve
test suites that are generated by VBT tools and CaR tools

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1203

separately. The proposed approach maintains the high test
coverage provided by VBT tools while at the same time
reduces the complexity of the tests through automatic
generation of mock objects. Using mock objects facilitates
the isolation of the unit under test. Some existing CaR tools
enable to create mock objects. On the other hand, CaR tools
do not provide means to achieve high code coverage, and
can therefore benefit from being combined with coverage
guaranteeing tools such as VBT tools. The advantage of
using VBT tools is that the verification process can be used
to ensure that only correct behavior is captured by the CaR
tool. We identified that high code coverage and isolation are
separate issues. They can be achieved independently using
the two groups of techniques which have complementary
strengths. Therefore we concluded that those groups of
techniques are ideal candidates for the following tool-chain.
The first phase produces, for a given system, unit tests with
high code coverage. The second phase captures the various
executions of the program, monitored by the output of the
first phase. The output of the second phase is a set of unit
tests with high coverage, which uses mock objects to test the
units, in isolation.
The main contributions of the paper are described in
Sections 4.We identify what the complementary strengths of
VBT and CaR techniques are (Section 4). In Section 3 we
present a novel tool-chain approach for unit regression
testing in the context of verification and for unit regression
testing in general. To the best of our knowledge, this tool-
chain has not been considered with VBT tools so far. We
have implemented the proposed approach using a concrete
VBT and a concrete CaR tool resulting in the toolchain
KeYGenU. By applying KeYGenU to a small banking
application we provide a proof of concept of our approach,
as described in Section 4. The advantages and possible
limitations of the approach are then discussed in Sections 1
and 6. The other sections are related work (Section 6) and
conclusions (Section 6). Complementary Strengths of the
Regarded Techniques In the introduction we have described
the complementary strengths of verification and testing in
general. Both approaches should be combined in order to
achieve reliable software and in order to optimize the
verification and testing process. In this section we describe,
by means of simple examples, advantages and disadvantages
of CaR tools and coverage guaranteeing tools like VBT tools
that are more specific to our tool-chain approach.

1.1 The Proposed Approach
We have analyzed the advantages and the problems of
verification-based testing (VBT) tools and of capture and
replay (CaR) tools separately. VBT tools support the
verification process by helping to find software faults. They
can generate test cases with high code coverage. These tools,
however, usually generate neither mock objects nor
regression test oracles that are based on previous program
executions. CaR tools are strong at abstracting complicated
program behavior and at automatically generating regression
test oracles. The CaR tools, however, can do this only for
specific program runs, that have to be provided somehow. In
contrast, VBT tools can generate program inputs for distinct
program runs.

Fig. 1. The creation of a tool chain and its

application to unit regression testing

From this analysis it becomes clear that these kinds of tools
should be combined into a tool chain. Thus, the output of the
VBT tool serves as input to the CaR tool, as shown in Figure
1. Our approach consists of two steps. In the first one the
user tries to verify the program P using a verification tool
that supports VBT. When a verification attempt fails, VBT is
activated to generate a unit test suite JT for P. The so
generated tests help in debugging P and the process is
repeated until P is verifiable. When the verification succeeds
the VBT tool is activated to generate a test suite JT that
ensures coverage of the code of P. The generated test suite
consists of one or more executable programs that are
provided as input to the CaR tool. Thus when JT is executed
the execution of the code under test is captured. The CaR
tool in turn creates another unit test suite – JT’. If the CaR
tool replays the observed execution of each test,
consequently the high code coverage of JT is preserved by
JT’. Furthermore, JT’ benefits from the improvements that
are gained by using the CaR tool. Depending on the
capabilities of the CaR tool this can be the isolation of units
and the extension of tests with regression-test oracles. Hence
the tool chain employs the strengths of both kinds of tools
involved. The test suite JT’ can then be used to regression
test P’ that is the next development version of P.

Advantages and Limitations
We regard our approach from two perspectives. On the one
hand, CaR tools can be used to further increase the quality of
VBT. On the other hand, CaR tools can benefit from being
combined with VBT tools. The VBT generated tests can be
used to drive program’s execution to ensure the coverage of
the whole code. From this perspective our approach can be
generalized by allowing general coverage ensuring tools for
the first phase. However, for CaR tools, such as [4, 17, 13],
it is important that during the capture phase only correct
program behavior is observed – and this can be best ensured
when a verification tool is used in the first phase. The
approach combines also the limitations of the involved tools.
CaR-based regression testing tools can discover changes in
the behavior when a program is modified, but they cannot
distinguish between intentional and not intentional changes.
Another problem occurs with CaR tools that generate mock
entities. It is often unclear under what preconditions the
behavior of a mock entity is valid when the mock entity is
executed in a state not previously observed by the CaR tool.
Some advantages and limitations are specific to the
particular tools and techniques. So are also the choice of the
test target and mock objects. We advise the reader to refer to
the referenced publications. Verification tools are typically

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1204

applicable to much smaller programs than testing tools. Our
approach targets therefore at quality assurance of small
systems that are safety or security critical. Building a tool-
chain adds complexity to the verification process.
We expect, however, a payoff on the workload when the
target system is modified and the quality of the software has
to be maintained. Most VBT techniques are based on
symbolic execution which is a challenging issue.
Considering Listing 1.2 of Section 2, when symbolic
execution reaches Line 8 the source code of write() may not
be available or it may be too complicated for symbolic
execution. Typically, in such situation method contracts that
abstract the method call can be provided. Alternatively
techniques such as [15] can be used that combine symbolic
execution and runtime-execution. Regression testing
techniques such as [11], for example, are often concerned
with test selection and test prioritization. The goal is to
reduce the execution time of the regression test suite and
thus to save costs. Graves et al. [9] describe test selection
techniques for given regression test suites. They reduce the
scope of the PUT that is executed by selecting a subset of the
test suite. Our approach provides an alternative partitioning
of the PUT (Figure 2) that can reduce its tested scope and
should be considered in combination with test selection
techniques. Instead of reducing the number of tests, parts of
the program are substituted by mock entities. When using
selection techniques, a typical regression testing is usually
described as follows (cf., for example, [9]). Let P be the
original version of the program, P0 the modified version that
we would like to test, and T is the test suite for P, then:

1. Select T’  T.
2. Test P’ with T’, establishing the correctness of P’ with

respect to T’.
3. If necessary, create T’’, a set of new functional or

structural test cases for P’.
4. Test P’ with T’’, establishing the correctness of P’ with

respect to T’’.
5. Create T’’’, a new test suite and test execution profile

for P’, from T, T’, and T’’.

Fig. 2. The traditional test selection (left) versus our

approach (right)

The authors of [9] point out the following problems
associated with each of the steps:
1. It is not clear how to select a ‘good’ subset T’ of T with

which to test P’.
2. The problem of efficiently executing test suites and

checking test results for correctness.
3. The coverage identification problem: the problem of

identifying portions of P’ or its specification that require
additional testing.

4. The problem of efficiently executing test suites and
checking test results for correctness.

5. The test suite maintenance problem: the problem of
updating and storing test information.

We use a slightly different model, which seems to solve the
above issues. This model can be summarized as follows. Let
P be the original version of the program, P’ the modified
version that we would like to test, and T is the test suite
which was generated for P after running the proposed tool-
chain.
1. Introducing mock objects produces P’’ P‘.
2. Test P’’ with T.
3. Rerun the tool-chain for the modified parts of P’ to

produce T’, covering new branches.
The problems are solved as follows:
1. There is no need to select a subset T’ of T. Instead we

have to consider how to create P’’, i.e., which parts of
the system P’ should be replaced by mock objects.

2. The problem of efficiently executing test suites and
checking test results for correctness is solved by using
mock objects, thus not executing the whole system.

3. The coverage identification problem is solved since the
whole program may be tested.

4. Same as step 2.
5. The problem of updating and storing test information is

solved by rerunning the tool-chain on the modified
system parts.

Safe regression test selection techniques guarantee that the
selected subset contains all test cases in the original test suite
that can reveal regression bugs [9]. By executing only the
unit tests of classes that have been modified a safe and
simple selection technique should be obtained.
Section 2:
We have implemented a concrete tool-chain according to
Figure 1, called KeYGenU, and have applied it to several
test cases. In this section we describe the two tools used by
KeYGenU, namely KeY and GenUTest, and provide an
example to demonstrate our ideas.
2.1 KeY
The KeY system [2] is a verification and test generation
system for a subset of JAVA and a superset of JAVA
CARD; the latter is a standardized subset of JAVA for
programming of SmartCards. At its core, KeY is an
automated and interactive theorem prover for firstorder
dynamic logic, a logic that combines first-order logic
formulas with programs allowing to express, e.g.,
correctness properties of the programs. KeY implements a
VBT technique [6] with several extensions [5, 8]. The test
generation capabilities are based on the creation of a proof
tree (see Figure 3) for a formula expressing program
correctness. The proof tree is created by interleaving first-
order logic and symbolic execution rules where the latter
execute the PUT with symbolic values in a manner that is
similar to lazy evaluation. Case distinctions in the program
are therefore reflected as branches of the proof tree; these
may also be implicit distinctions like, e.g., the raising of
exceptions. Proof tree branches corresponding to infeasible
program paths, i.e., paths that can never be executed due to
contradicting branch conditions in the program, are detected
and not analyzed any further. Soundness of the system
ensures that all paths through the PUT are analyzed, except
for parts where the user chooses to use abstraction. Thus,
creating tests for those proof branches often ensures full
feasible path coverage of the regarded program part of the
PUT. Based on the information contained in the proof tree,
KeY creates test data using a built-in constraint solver. The

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1205

PUT is initialized with the respective test data of each
branch at a time. In this way execution of each program path
in the proof tree is ensured.

Fig. 3. Overview of verification-based testing implemented
in KeY (left) and capture and replay implemented in
GenUTest (right)

2.2 GenUTest
GenUTest is a prototype tool that generates unit tests [13].
The tool captures and logs inter-object interactions occurring
during the execution of JAVA programs. The recorded
interactions are then used to generate JUnit tests and mock-
object like entities called mock aspects. These can be used
independently by developers to test units in isolation. The
comprehensiveness of the generated unit tests depends on
the software execution. Software runs covering a high
percentage generate in turn unit test with similar code
coverage. Hence, GenUTest cannot guarantee a high
coverage.
Figure 3 presents a high level view of GenUTest’s
architecture and highlights the steps in each of the three
phases of GenUTest: the capture phase, the generation
phase, and the test phase. In the capture phase the program is
modified to include functionality to capture its execution.
When the modified program executes, inter-object
interactions are captured and logged. The interactions are
captured by utilizing AspectJ, the most popular Aspect-
Oriented Programming extension for the JAVA language
.The generation phase utilizes the log to generate unit tests
and mock aspects, mock-object like entities. In the test
phase, the unit tests are used by the developer to test the
code of the program.

2.3 Testing First-Order Logic Axiom in Program
Verification
Program verification system based on automated theorem
proves rely on user provided axioms in order to verify
domain specific properties of code. AUTOCERT is a source
code verification tool for autogenerated code in safety
critical domains, such as flight code generated from simulink
models in the guidance, navigation and control (GN&C)
domain using MathWorks’ Real-Time Workshop code
generator. AUTOCERT supports certification by formally
verifying that the generated code complies with a range of
mathematically specified requirements and is free of certain
safety violation. AUTOCERT uses Automated Theorem
Provers(ATP) based on First-Order Logic(FOL) to formally

verify safety and functional correctness properties of auto
generated code, as illustrated in next page figure.
AUTOCERT works by inferring logical annotation on the
source code, and then using a verification condition
generator (VCG) to check these annotations. This results in a
set of first-order verification condition (VCs) that are then
sent to a suite of ATP. These ATPs try to build proofs based
on the user provided axioms, which can themselves be
arbitrary First-Order Formulas (FOS).
If all the VCs are successfully proven, then it is graduated
that the code complies with the properties with one
important proviso: we need to trust the verification system,
itself. The trusted base is the collection of components which
must be correct for us to conclude that the code itself really
is correct indeed, one of the main motivations for applying a
verification tool like AUTOCERT to autocode is to remove
the code generator a large, complex, black box-from the
trusted base.
The annotation inference system is not part of the trusted
base, since annotations merely serve as hints in the
verification process-they are ultimately checked via their
transaction into VCs by the VCG. The logic that is encoded
in the VCG does need to be trusted since the proofs they
generate can be sent to the proof checker. In fact, It is the
domain theory, defined as a set of logical axioms, that is the
most crucial part of the trusted base. Moreover, in our
experience, it is the most common source of bugs.

AutoCERT narrows down the trusted base by verifying the
geneated code.
Section 3:
A FRAMEWORK FOR TEST CARVING AND
REPLAY
Java programs can have millions of allocated heap instances
[29] and hundreds of thousands of live instances at any time.
Consequently, carving the raw state of real programs is
impractical. We believe that cost-effective CR-based testing
will require the application of multiple strategies that select
information in raw program states and use that information
to trade a measure of effectiveness to achieve practical cost.
Strategies might include, for example, carving a single
representative of each equivalence class of program states or
pruning information from a carved state on which a method
under test is guaranteed not to depend. The space of possible
strategies is vast and a general framework for CR testing will
aid in exploring possible cost-effectiveness tradeoffs in the
space of CR testing techniques. For the purposes of
explaining our framework, we consider a Java program to be
a state transition system. At any point during the execution
of a program, the program state S can be defined
conceptually as all of the values in memory. A program

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1206

execution can be formalized either as a sequence of program
states or as a sequence of program actions that cause state
changes. A sequence of program states is written as _

0 1, ,......,s s  where is S and 0s is the initial program

state as defined by Java. A state 1is  is reached from is by

executing a single action (e.g., bytecode). A sequence of

program actions is written as  . We denote the final state of

an action sequence ()s  . Regardless of how one develops,

or generates, a unit test, there are four essential steps:
1. identify a program state from which to initiate testing,
2. establish that program state,
3. execute the unit from that state, and
4. judge the correctness of the resulting state.
In the rest of this section, we define a general framework
that allows different strategies to be applied in each of these
steps.

3.1 Basic Carving and Replaying
Fig. 1 illustrates the general CR process. Given a system test

case xst carving a unit test case xmDUT for target unit m

during the execution of xst consists of capturing pres , the

program state immediately before the first instruction of an

activation of method m, and posts , the program state

immediately after the final instruction of m has executed.

The captured pair of states (pres , posts) defines the DUT

case for method m, denoted xmDUT . States in this pair can

be defined by directly capturing a pair of states in  or by
recording the cumulative effects of sequences of program

actions pre and post i.e., recording s(pre) and

s(post) .A CR testing approach is said to be state based if it

records pairs (pres , posts) and action based if it records pairs

(pre , post). We note that action-state hybrid CR

approaches that record, for example, pairs of actions

sequences and states (pre , posts) may also be useful.

Fig. 1. Carving and replay process.

In practice, it is common for a method m to undergo some

modification (e.g., to 'm) over the program lifetime. To
efficiently validate the effects of a modification, we replay

xmDUT on 'm . Replaying a DUT for a method 'm requires

the instantiation of pres by either loading the state pres into

memory or by executing  pre, depending on how the state

was carved. From this state, execution of 'm is initiated and
it continues until it reaches the point corresponding to the

carved posts . At that point, the current execution state
'
posts

is compared to posts . If the post states are the same, we can

attest that the change did not affect the behavior of the target

unit exercised by. xmDUT .However, if the change altered

the semantics of m, then further processing will be required
to determine whether the alteration matches the developer’s
expectations (we discuss the support that provided by our
implementation of CR in Section 3.1).
This basic CR approach suffers from several fundamental
limitations that must be addressed in order to make CR cost-
effective. First, the proposed basic carving procedure is at
best inefficient and likely impractical. It is inefficient
because a method may only depend on a small portion of the
program state, thus storing the complete state is wasted
effort. Furthermore, two distinct complete program states
may be identical from the point of view of a given method,
thus carving complete states would yield redundant unit
tests. It is impractical because storing the complete state of a
program may be prohibitively expensive in terms of time and
space. Second, changes to m may render

xmDUT unexecutable in 'm . Reducing the cost of CR

testing is important, but we must produce DUTs that are
robust to various types of changes so that they can be
executed across a series of system versions in order to
recover the overhead of carving, and provide further support
to analyze the reasons behind DUTs detected differences.
Finally, the use of complete poststates to detect behavioral
differences is not only inefficient but may also be too
sensitive to behavior differences caused by reasons other
than faults (e.g., fault fixes, algorithm improvements, and
internal refactoring) leading to the generation of brittle tests.
The following sections address these challenges.

3.2 Improving CR with Projections
We focus CR testing on a single method by defining
projections on carved prestates that preserve information
related to the unit under test and are likely to provide
significant reduction in prestate size.
State-based projections.
A state projection function  : S S preserves specific
program state components and elides the rest. For example, a
state projection may preserve the scalar fields in the object, a
subset of the references to other objects, or a combination of
both. Underlying many useful state projections is the notion

of heap reachability. An object 'o is reachable in one
dereference from object o if the value of some field f

references 'o ; let
, where

Fields(c) denotes the set of (nonstatic) fields defined for
class c and Class returns the class of an object. Objects
reachable through any chain of dereferences up to length k
from o are defined by using the iterated composition of this

binary relation, ; as a notational

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1207

convenience, we will refer to this as The positive

transitive closure of the relation, , defines the
set of all reachable objects from o in one or more
dereferences.
To promote replay capabilities, state-based CR testing
approaches at the method level should use projections that
retain at most the set of heap objects reachable from a given
calling context. That set includes heap objects reachable
through the receiver object, the call’s parameters, static
fields within the method’s class, and public static fields from
other classes. More formally, given a call
the reachable objects from the calling context include

1.

2.
3. where Fieldss is

the set of static fields for a class and reach has been
extended to fields, and

4.
where FieldSps is the set of public static fields for a class and
Class is the class declaring a given method.

This projection is lossless for reasoning about a method

invocation since it retains all of the information in pres that

could possibly be accessed by the call to m. More efficient
projections might consider a subset of the heap elements
captured by the calling context reachable projection. Some
of these projections will use a notion of distance to
determine what heap elements to preserve (e.g., retain all the
heap elements that may be reached in up to k dereferences)
while others may aim to maintain just the basic heap content
and the heap structure (e.g., retain only the values of
reference fields, thereby eliminating all scalar fields, which
would maintain the heap shape of a program state). Some
projections will determine the portion of the state to preserve
ahead of time through some form of source code analysis
(e.g., side-effects analysis or reachability analysis), while
others will make that determination at runtime (e.g., retain
the heap elements reachable or read during execution).

Fig. 2. Application of projections.

The range of projections makes it possible to trade
robustness for reduction in carving cost and replaying time
by defining projections that eliminate more state
information. Section 3.2 presents five projections that
exercise this trade-off.
Action-based projections and transformations.
Projections can also operate on sequences of program

actions, :   to distill the portion of a program run

that affects the prestate of a unit method. Unfortunately, a
purely action-based approach to state capture will not work
for all Java programs. For example, a program that calls
native methods does not, in general, have access to native
method instructions. To accommodate this, we can allow for
transformation of actions during carving, i.e., replace one
sequence of instructions with another. Transformation could
be used, for example, to replace a call to a native method
with an instruction sequence that implements the side effects
of the native method. More generally, one could design an

instance of  that would replace any trace portion with a
summarizing action sequence.
Applying projections. Fig. 2 illustrates two potential
applications of projections on DUTs: test case reduction and
test cases filtering. Reduction aims at thinning a single
carved test case by retaining only the projected prestate (in

Fig. 2, for example, the projection on preS carved from

xmDUT leads to a smaller preS). Reducing a DUT’s prestate

results in smaller space requirements and, more importantly,
in quicker replay since loading time is a function of the
prestate size. For example, a method like total Pages in Fig.
3 that returns the int field pages presents a clear opportunity
to benefit from a reduction that retains just the scalar fields.
Such reduction would avoid the need to load some
potentially large objects such as the info hashtable, making
replay faster. Depending on the type of projection, such
gains may be achieved at the expense of additional analysis
and carving time (e.g., using a more precise but expensive
analysis to determine what to carve), or reduced fault
detection power (e.g., a projection may discard an object that
was necessary to expose the fault). Furthermore, test
executability may be sacrificed as well when, for example,
the data structures needed to successfully instantiate the
object in memory become unavailable due to applied
projections. In Fig. 3, the relevant program state for
getAuthorName includes the field info of type
java.util.Hashtable from the EnglishBook class, which stores
the type of information for a particular book (such as
publication date and author name). If the same scalar-only
type reduction were applied, then DUTs for getAuthorName
would not be replayable because the info field would be
missing from the prestate. Under this circumstance, an
alternative projection to enable reduction could aim for
carving the fields of the parts of the hashtable just touched
during the execution. The key is to identify the suitable level
of reduction that would maximize efficiency, fault detection,
and test executability at the same time.
Filtering aims at removing redundant DUTs from the suite.
Consider a method that is invoked during program
initialization and is independent of the program parameters.
Such a method would be exercised by all system tests in the
same way and likely result in multiple identical DUTs for
that particular method. Filtering by comparing complete
prestates could remove such duplicate tests, retaining just the

DUTs that have a unique preS . Consider a simple accessor

method with no parameters that returns the value of a scalar
field. If this method is invoked by tests from different
prestates, then multiple DUTs will be carved, and filtering
based on complete prestates will retain all of the DUTs even

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1208

though they exercise the same behavior. For this method,
filtering based on a projection that preserves just the subset
of a prestate that is reachable from this in one dereference

may remove multiple redundant DUTs (in Fig. 2, ()pres

for xmDUT and for zmDUT are identical so one of them can

be removed). Clearly, in some cases, overaggressive filtering
may result in a lower fault detection capability since we may
discard a DUT that is different and, hence, potentially
valuable. Note that, contrary to test case reduction, while
filtering may sometimes only consider subsets of program
states to judge equivalence, the stored program states are not
modified; consequently, test executability is preserved since
the DUTs that are retained are complete. In practice,
however, reduction and filtering are likely to be applied in
tandem such that reduced tests are then filtered or filtered
tests are then reduced.

Fig. 3. Reduction and test executability.

3.3 Strategies to Manage Replay Anomalies
We have discussed how overly aggressive reductions can
impair replay. Similarly, certain method changes such as
modifications in a method’s signature or key data structures
may prevent a DUT from correct replay. For example,
consider the scenario shown in Fig. 4 where we carved

DUTxBook from 0v of the Book class. Replaying the

constructor for Book with the carved DUTxBook in 1v

encounters an error resulting from incompatible types in the
words field between versions.

Fig. 4. An example of replay failure.

Effective CR testing must detect failures arising from
carving limitations, differentiate them from regular
application failures, and find ways to use this information to
further guide the testing process and ensure the coverage of
the target method. The detection and differentiation steps are
implementation specific and are discussed in the following
section, while this section focuses on what to do once a DUT

fails to replay. When xmDUT cannot be replayed, one could

replay the system test case xst on the new version of the

software, while carving a new xmDUT to replace the one

invalidated by the program modification. The idea here is to
use the DUT failure as a trigger for the system test case
execution to ensure the proper coverage of the target method
by the system test while creating DUTs for the future. An
alternative approach that avoids system test case execution
and immediate recarving takes advantage of the existing
body of executable DUTs on other methods that exercise the
target method. For instance, in Fig. 4, replaying the DUTs
for the addBook method of the Library class would exercise
the Book constructor (through the invocation of new
Book(title, length)) without the explicit loading of
DUTxBook. This approach is appealing because it
eliminates the immediate need for recarving while still
enabling the localized execution of a changed DUT.
However, it does not account for the potential existence of
multiple callers and the possibility that some callers may not
be replayable themselves. When DUTxm fails, we can
identify a set of DUTs whose execution reaches DUTxm’s

prestate; we call such a set a replay frontier of xmDUT .

There may be many replay frontiers for a given DUT.
Selection of an appropriate frontier is guided by three
criteria:
1) the ability of the frontier to successfully replay the

behavior exercised in xmDUT ,

2) the cost of executing the frontier, and

3) the localization of defect detection relative to xmDUT .

At one extreme, xmainDUT , i.e., the main program,

comprises a replay frontier for any DUT. Intuitively, it
maximizes replayability, since it is essentially an execution
of system test case stx. On the other hand, this frontier will
be more costly to execute than other frontiers and will
provide a less focused characterization of detected defects.
At the other extreme, one could identify the set of DUTs that
directly invoke method m corresponding to the failed DUT.
Executing these DUTs will provide localized replay of the

behavior of xmDUT and may be significantly less expensive

than xmainDUT . This frontier is more likely to exhibit replay

anomalies due to the proximity to the change (e.g., when the
caller and callee are methods in the same changed class). In
Section 3.1, we explore a family of strategies that attempt to
balance the three frontier selection criteria. 3.4 Adjusting
Sensitivity through Differencing Functions

3.4 Adjusting Sensitivity through Differencing
Functions
The basic CR testing approach described earlier compares a
carved complete poststate to a poststate produced during
replay to detect behavioral differences in a unit. The use of
complete poststates is both inefficient and unnecessary for
the same reasons as outlined above for prestates. While we
could use comparison of poststate projections to address
these issues, we believe that there is a more flexible solution
that could also help control DUTs’ sensitivity to changes.

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1209

Method unit tests are typically structured so that, after a
sequence of method calls that establish a desired prestate, the
method under test is executed. When it returns, additional
method calls and comparisons are executed to implement a
pseudo-oracle. For example, unit tests for a red-black tree
might execute a series of insert and delete calls and then
query the tree height and compare it to an expected result to
judge partial correctness. We allow a similar kind of pseudo-
oracle in CR testing by defining differencing functions on
poststates that preserve selected information about the results
of executing the unit under test. These differencing functions
can take the form of poststate projections or can capture
properties of poststates, such as tree height or size, and
consequently may greatly reduce the size of poststates while
preserving information that is important for detecting just the
meaningful behavioral differences. We define differencing
functions that map states to a selected differencing domain,

dif: S D . Differencing in CR testing is achieved by

evaluating '() ()post post
dif s dif s . State projection

functions are simply differencing functions where D = S. In
addition to the reachability projections defined in the
previous section, projections on unit method return values,
called return differencing, and on fields of the unit instance
referenced by this, called instance differencing, are useful
since they correspond to techniques used widely in hand-
built unit tests.

Fig. 5. Differencing sequences of poststates.

A central issue in differential testing is the degree to which
differencing functions are able to detect changes that
correspond to faults while masking implementation changes.
We refer to this as the sensitivity of a differencing function.
Clearly, comparing complete poststates will be highly
sensitive, detecting both faults and implementation changes.
A projection function that only records the return value of
the method under test will be insensitive to implementation
changes while preserving some fault sensitivity. Note also
that these differencing functions provide different
incomplete views of the program state. Their incompleteness
reduces cost and may add some level of insensitivity to
changes in the implementation, but it could also reduce their
fault detection effectiveness. We address this by allowing for
multiple differencing functions to be applied in CR testing
which has the potential to increase fault sensitivity, without
necessarily increasing implementation change sensitivity.
For example, using a pair of return and instance differencing
functions allows one to detect faults in both instance field
updates and method results, but will not expose differences
related to deeper structural changes in the heap. Fault
isolation efficiency could also be enhanced by the
availability of multiple differencing functions since each
could focus on a specific property or set of program state
components that will help developers focus their attention on
a potentially small portion of program state that may reflect

the fault. DUTs can also be refined to increase their
sensitivity in the temporal dimension by capturing sequences

of poststate(,pre posts )that capture intermediate points

during the execution of the method under test. Such poststate
sequences can be valuable to support fault isolation and
debugging efforts since they provide additional observability
on program states generated during the method execution.
Fig. 5 illustrates a scenario in which a DUT begins execution

of m at pres . Conceptually, during replay, a sequence of

poststates is differenced with corresponding states at
intermediate states of the method under test. For example, at
point 1, the test compares the current state to the

captured 1posts , similarly at points 2 and 3 the pre and

poststates of the call out of the unit are compared.
Using a sequence of poststates requires that a
correspondence be defined between locations in m and m’.
Correspondences could be defined using a variety of
approaches, for example, one could use the calls out of m

and 'm to define points for poststate comparison (as is
illustrated in Fig. 5) or common points in the text of m and
m’ could be detected via textual differencing. Fault isolation
information is enriched by using multiple poststates, since if
the first detected difference is at location i, then that
difference was introduced in the region of execution between
location i -1 and i. Of course, storing multiple poststates may
be expensive so its use can only be advocated to narrow the
scope of code that must be considered for fault isolation
once a behavioral difference is attributed to a fault.

4 INSTANTIATING THE FRAMEWORK
In this section, we describe the architecture and
implementation details of a state-based instantiation of the
framework for the Java programming language. Section 4
discusses alternative CR implementations.
4.1 System Architecture
Fig. 6 illustrates the architecture of the CR infrastructure.
The carving activity starts with the Carver class which takes
four inputs: the program name, the target method(s) m

within the program, the system test case xst inputs, and the

reduction and filtering options.

Fig. 6. CR tool architecture.

Carver utilizes a custom class loader CustomLoader (that
employs the Byte Code Engineering Library (BCEL)) to
incorporate instrumentation code into the program. We
instrument the bytecode for all loaded program classes
except the ones that are in the Java API, part of the CR tool,

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1210

and members of third-party libraries used by the tool. The
instrumentation uses the singleton ContextFactory class to
store pre and poststates of program methods at the entry and
exit points of the methods (including exceptional exit points
forced by throw instructions in m or methods called by m).
Every execution of a method that is targeted for CR testing
will lead to, at least, two invocations of the ContextFactory:
one at the entry point of the method to store spre and one at
the exit point of the method to store spost. As discussed
earlier, carving the entire state of the program is impractical,
therefore the ContextFactory utilizes ContextBounding to
determine the parts of the program state to be stored during
carving based on the chosen projections to perform reduction
and filtering. Once the carving scope has been determined,
ContextFactory utilizes an open source package, XStream
[46], to perform the serialization to XML of the heap objects
in the defined scope. Finally, ContextFactory stores the
serialized program states. By default, ContextBounding
applies the most conservative projection: an interface
reachability projection (as described in Section 2.2), and
filters DUTs based on that projection. Several other
projections and lossy filters are available and introduced in
the upcoming sections. While XStream is a powerful object
serialization package, by default it does not serialize a
class’s static fields. However, to truly replay a method with
the prestate that it encountered during a system test, we need
to establish the values of static fields as well as instance
fields since both influence the execution of the method.
Fortunately, XStream allows a high level of customization.
We implemented a custom extension for XStream that
enables the serialization of and the application of projections
to static fields by retrieving their contents including
transitively reachable objects, serializing it using XStream,
and placing the resulting XML in a special tag which we
introduced to contain static fields. This XStream extension
also takes care of deserializing the static fields and restoring
them upon full object deserialization.
We have implemented two options for storing poststates:
1) complete poststate descriptions encoded in an XML
 format
2) unique fingerprints of poststates defined by hashing
 of XML encodings.
The complete representation is helpful in determining which
part of the poststate was affected by the program changes,
but carving execution time and storage requirements may be
higher. Fingerprint storage allows for more efficient carving,
storage, and difference detection, but does not allow for a
detailed characterization of state differences. The other
primary CR component, Replay, shares many of the core
classes with Carver (CustomLoader, ContextBounding,
ContextFactory) and works in a similar manner. To establish
the desired prestate on which to invoke m0, Replay utilizes
the ContextLoader class to obtain and load the carved spre of
m, using XStream to deserialize the stored state. After that,
m0 is invoked. Similar to Carver, Replay instruments the
class of m0 and utilizes the ContextFactory, but only to store
spost after m0 is invoked. Once m0 has been replayed, we use
Dif, the differencing mechanism, to compare the spost of m0
generated during Replay with the carved spost of m to
determine whether the changes in m0 resulted in a
behavioral difference. Currently, we have fully automated
the differencing functions on return values, instance fields,

state fingerprints, and complete XML state encodings which
include static fields.
If Replay fails for m’, the ReplayAnomalyHandler will begin
the process of exploring the replayable frontier of m’. The
current implementation to explore the frontier can use call
graphs or the DUTs built-in caller information to guide the
replay process in the presence of an anomaly.
These two mechanisms trade carving efficiency for replay
efficiency. Keeping track of the DUT caller information
requires an additional tracking method within
ContextFactory that maintains a DUT call stack which
increases carving overhead and storage per DUT. However,
such information often leads to a more precise determination
of what DUT needs to be replayed in the presence of a
replay failure, which can cut down replay time.

Fig. 7. DUT file contents and directory structure.

Each generated DUT is composed of two files: prestate,
which includes the objects reachable through the method’s
parameters or the class fields, and poststate, which contains
the reachable objects and return value for the method. DUTs
are organized through a directory structure of four levels that
includes a level for system tests, a level for classes, a level
for methods, and one for DUTs. The DUTs are assigned an
identification hashcode based on their corresponding method
signature as well as the information identifying its caller
DUT. Fig. 7 provides an example of DUT file contents for
the after m0 is invoked. Once m0 has been replayed, we use
Dif, the differencing mechanism, to compare the spost of m0
generated during Replay with the carved spost of m to
determine whether the changes in m0 resulted in a
behavioral difference. Currently, we have fully automated
the differencing functions on return values, instance fields,

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1211

state fingerprints, and complete XML state encodings which
include static fields.
If Replay fails for m0, the ReplayAnomalyHandler will
begin the process of exploring the replayable frontier of m0.
The current implementation to explore the frontier can use
call graphs or the DUTs built-in caller information to guide
the replay process in the presence of an anomaly. These two
mechanisms trade carving efficiency for replay efficiency.
Keeping track of the DUT caller information requires an
additional tracking method within ContextFactory that
maintains a DUT call stack which increases carving
overhead and storage per DUT. However, such information
often leads to a more precise determination of what DUT
needs to be replayed in the presence of a replay failure,
which can cut down replay time. Each generated DUT is
composed of two files: prestate, which includes the objects
reachable through the method’s parameters or the class
fields, and poststate, which contains the reachable objects
and return value for the method. DUTs are organized
through a directory structure of four levels that includes a
level for system tests, a level for classes, a level for methods,
and one for DUTs. The DUTs are assigned an identification
hashcode based on their corresponding method signature as
well as the information identifying its caller DUT. Fig. 7
provides an example of DUT file contents for the method
edit Height of the class Student and illustrates the DUT
naming scheme described above.

4.2 Implemented Projections
Here, we describe the types of projections implemented in
the CR tool. These offer a degree of control over the carved
test cases that can be generated. Interface k-bounded
reachable projection. The interface k-bounded reachable

projection for a method invocation ; defines
the set of preserved objects to include only those reachable
from the target method class via dereference chains of length
up to k, i.e.,

 The intuition behind this projection is that DUTs that have
identical heap structure up to depth k may exercise m in a
similar manner and this could lead to significant filtering
(e.g., a method working on link lists may only need to access
the first k elements in a list to exhibit all of its interesting
behavior). Using small values of k can greatly reduce the
size of the recorded prestate and, in turn, this can lead to
more DUTs being judged equivalent. For many methods, a
small value of k will have no impact on unit-test robustness.
For example, a value of 1 would suffice for a method whose
only dereferences are accesses to fields of this. If a method
changes to access data along a reference chain of length
greater than the k set during carving, then the DUTs carved
using the k-bounded projection would have retained
insufficient data about the prestate to allow replay. Our
implementation dynamically detects this situation and raises
a custom exception to indicate a replay anomaly. During
state storage, the heap is traversed and objects that are
referenced at a depth of k +1, but no shallower, are marked.
For each such marked objects, a sentinel attribute is
introduced into the prestate XML encoding. When the
prestate is deserialized, every object created from XML with
a sentinel attribute is added to a Collection. Instrumentation

is added after all GETFIELD instructions to check for the
membership of the requested object in the Collection. If the
object is a member, the instrumentation throws a
SentinelAccess Exception. This prevents
NullPointerExceptions from being thrown during sentinel
object accesses which could be confused with normal
application exceptions. It also prevents invalid replay results
which would be caused by a program handling a null value
and continuing execution when the value would not
normally have been null. These SentinelAccessExceptions
are one mechanism for identifying replay anomalies and
triggering the ReplayAnomalyHandler.
May-reference reachable projection. The may-reference
reachable projection uses a static analysis that calculates a
characterization of the objects that may be referenced by a
method activation either directly or through method calls.
This characterization is expressed as a set of regular

expressions of the form: 1.... ()?npf f F  which captures an

access path that is rooted at a parameter p and consists of n

dereferences by the named fields if (e.g., p.next. next.val).

If the analysis calculates that the method may reference an
object through a dereference chain of length greater than n,
the optional final term is included to capture objects that are
reachable from the end of the chain through dereference of
fields in the set F. In general, F is calculated on a per-type
basis whereF(c) is the subset of fields of class c that may be
referenced by an execution of the method.

 Let ' '
(())() { . ()}F f F class oreach o o O f address o  

capture reachability restricted to the subset of fields encoded
in F; reachf denotes reachability for the singleton set {f}. For

a regular expression of the form p 1........ mf f , where m 

n, we construct the

set: 1 1() (...(()))f fm freach p reach reach p  , since

we want to capture all references along the path. If the

regular expression ends with the term F  , then we union an
additional term of the form

1((...(())))F fm freach reach reach p .

This projection can reduce the size of carved prestates while
retaining arbitrarily large heap structures that are relevant to
the method under test. We implement our projection using
the context-sensitive interprocedural read-write analysis
implemented in Indus [47]. This analysis handles all of the
complexities of Java in its alias analyses including the safe
approximation of readwrite operations performed in
libraries. We configure this analysis to calculate l-bounded
access path and then generate regular expressions that
capture the set of all possible referenced access paths up to
length l; we use a default of l=2.When traversing the
program for serialization using XStream, we simultaneously
keep track of all regular expressions and mark only those
objects that lie on a defined access path for storage in XML.
Note that the lbounding controls the precision of the static
analysis and does not limit the depth of the prestate carving,
consequently no sentinel objects are introduced with this
projection. This analysis is also capable of detecting when a
method is side-effect free and in such cases the storage of
poststates is skipped since method return values completely
define the effect of such methods.

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1212

 Touched-carving projection. The touched-carving
projection utilizes dynamic information about all the fields
that were read or written during the method execution (or the
execution of methods called from that target method) to
decide which parts of the program states to store. Our
implementation of this projection starts with the
instrumentation utilized by the interface k-bounded
reachable projection, and it incorporates additional
instrumentation to mark the parts of the heap referenced by
the instrumented methods. During carving, the additional
instrumentation helps to identify referenced fields and stores
them. Fields that are not referenced are stored up to depth of
k to ensure a level of robustness in the event of method
changes that result in references to additional fields. There
are two implementation aspects of this projection worth
mentioning. First, given that we cannot know which fields
will be read or written to prior to the execution of a method,
we first store the method’s complete spre in memory, then
execute an instrumented version of the method that records
all referenced fields for storage in the DUT.
This record is then used to write the XML structure or
fingerprint to disk. Second, DUTxm’s spre needs to store the
fields referenced by m and also the fields referenced by all
the methods m calls. To do this, we maintain object graphs
during carving. Fig. 8 illustrates how this works for the class
Person when a call to checkGrowth is made. The gray areas
indicate fields that were referenced either directly or
indirectly by the method. Fields in light gray were read,
Light gray indicates read items and dark gray indicates
written items. fields in dark gray were written, and fields in
both were read and written. In the method checkGrowth, the
field check is both read and written in the first line. The
fields w, h, w:value, and h:value are read indirectly through
calls to isTaller and isHeavier.
Clustering projection. The clustering projection attempts to
identify a set of similar DUTs, like DUTxcallee;1;
DUTx!callee;2; . . . , that result from the repeated invocation
of callee from within the same DUT, DUTxcaller, of method
caller. Fig. 9 illustrates an instance where this projection
may be very effective. Every invocation of printbook results
in a DUTxprintbook and one DUT for incIndex for each
iteration of the while loop, i.e., length DUTsxincIndex.
Consequently, there may be many DUTs generated for
incIndex and the added value of those DUTs may be limited.
Instead of carving such DUTs, through the clustering
projection, we keep track of the number of invocations of
incIndex from the context defined by DUTxprintBook.
When that number exceeds a predetermined threshold, we
replace the incIndex DUTs with a reference to DUT x
printbook which enables their indirect replay.
This projection amounts to a heuristic for identifying a
replay frontier and exploiting that frontier to filter DUTs
lower in the call hierarchy. Normalizing transient data.
Projections seek to retain relevant differences between states
while eliminating data that is regarded as irrelevant. It is
possible to eliminate differences, without eliminating data by
normalizing values, for example, setting all java.util.Date
fields to a fixed value, or fixing the seed in
java.util.Random. In most Java programs, there are wealth of
data types that have transient data. We have identified a
number of those types and applied normalizing value
transformations. For example, autoflushing Flushable

implementations can be flushed at different times and
differences in the contents of the backing Buffer objects,
char[]s or byte[]s can occur under normal circumstances. To
normalize buffer array contents, we check for Flushable
types and Buffer types before serialization. If a Flushable
type is found, the flush method is called, if a Buffer type is
found, the clear method is called. Since the implementations
for flush and clear do not truly clear the backing array (they
just reinitialize a pointer), we use reflection to get all fields
with type char[] or byte[] and overwrite them with zeros.

Fig. 8. Touched-carving projection.

Fig. 9. A filtering strategy based on a caller’s context.

 Then, serialization continues as normal. This
process guarantees that variable buffer contents are
consistent across all poststates of multiple executions.

4.3 Toolset Limitations
The current CR toolset is robust in its support of the Java
language and commonly used libraries and frameworks, but
it has two limitations. Threading limitations. Our toolset was

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1213

originally developed for sequential programs and the
instrumentation strategy we employ in the Carver is not
thread safe. Rather than employ a basic locking strategy in
instrumentation to assure thread-safety, we have deferred the
treatment of thread-safety to pursue a more complex and
potentially more efficient solution that avoids locking
overhead in accessing Carver data structures. We note that,
for replay, thread safety is not an issue. Serialization
limitations. Our approach requires the ability to save and
restore object data representing the program state. However,
the Java java.io.Serializable interface limits the type of
objects that can be serialized. For example, Java designates
file handler objects as transient (nonserializable) because it
reasonably assumes that a handler’s value is unlikely to be
persistent and restoring it could enable illegal accesses. The
same limitations apply to other objects, such as database
connections and network streams. In addition, the Java
serialization interface may impose additional constraints on
serialization.
For example, it may not serialize classes, methods, or fields
declared as private or final in order to avoid potential
security threats. Fortunately, we are not the first to face these
challenges. We found multiple serialization libraries that
offer more advanced and flexible serialization capabilities
with various degrees of customization. We ended up
choosing the XStream library [46] because it comes bundled
with many converters for nonserializable types and a default
converter that uses reflection to automatically capture all
object fields, it serializes to XML which is more compact
and easier to read than native Java serialization, and it has
built-in mechanisms to traverse and manage the storage of
the heap which was essential in implementing the
projections. In cases where XStream support was
insufficient, we developed custom extensions such as the one
mentioned before that enables the serialization of static
fields. We anticipate that further extensions and
customizations will accommodate other special object types.
Scope limitations.
Our toolset captures a large part of the program state
relevant to a calling context, but it does not capture all of it.
We do not capture public variables declared by other classes
that are not reachable from the target method class. This
implicit projection may cause false replay differences, but it
is necessary to avoid bulky and inefficient DUTs. In
addition, we do not capture fields declared static final since
they cannot be restored during deSerialization. However, we
note that such fields are often initialized to fixed values that
are consistent across executions, limiting their influence in
post state differences.

Section 5:
EMPIRICAL STUDY
The goal of the study is to assess execution efficiency, fault
detection effectiveness, and robustness of DUTs. We will
perform such assessment through the comparison of system
tests and their corresponding carved unit test cases in the
context of regression testing. Within this context, we are
interested in the following questions:
RQ1. Can DUTs reduce regression testing costs? We would
like to compare the cost of carving and reusing DUTs versus
the costs of utilizing regression test selection techniques that
work on system test cases.

RQ2. What is the fault detection effectiveness of DUTs?
This is important because saving testing costs while reducing
fault detection is rarely an enticing tradeoff.
RQ3. How robust are the DUTs in the presence of software
evolution? We would like to assess the reusability of DUTs
on a real evolving system and examine how different types
of change can affect the robustness and sensitivity of the
carved tests.

5.1 Regression Test Suites
Let P be a program, let P’ be a modified version of P, and let
T be a test suite developed initially for P. Regression testing
seeks to test P’. To facilitate regression testing, test
engineers may reuse T to the extent possible. In this study,
we considered five types of test regression techniques, two
that directly reuse with system tests (S) and three that reuse
the DUTs carved from the system test suite (C). S-retest-All.
When P is modified, creating P’, we simply reuse all
runnable test cases in T to test P0; this is known as the retest-
all technique [33]. It is often used in industry [35] and as a
control technique in regression testing experiments. S-
selection. The retest all technique can be expensive:
rerunning and rechecking the outcome of all test cases may
require an unacceptable amount of time or human effort.
Regression test selection techniques [21], [26], [34], [41] use
information about P, P’, and T to select a subset of T, T’,
with which to test P0. We utilize the modified entity
technique [26], which selects test cases that exercise
methods, in P, that 1) have been changed in producing P’ or
2) use variables or structures that have been deleted or
changed in producing P’. C-selection-k. Similar in concept
to S-selection, this technique executes all DUTs, carved with
a k-bounded reachable projection, that exercise methods that
were changed in P’. This technique follows the conjecture
that deeper references are often not required for replay, so
bounding the carving depth may improve the CR efficiency
while maintaining a DUT’s strengths. Within this technique,
we explore depth bounding levels of 1, 5, and 1 (unlimited
depth which corresponds to the interface reachable
projection). C-selection-mayref. Similar to C-selection-k
except that it carves DUTs utilizing a may-reference
reachable projection. This technique is based on the notion
that a program change will mostly affect the parts of the
heap reachable by the method under test or by the methods
invoked by the method under test. C-selection-touched.
Similar to C-selection-k except that it carves DUTs utilizing
a touched-carving projection. This technique is based on the
idea that modifications to the program are more likely to
affect parts of the heap actually touched in the process of
invoking the method under test. The touched-carving
projection here is bounded to a depth of at least 1 so that the
generated DUTs store at least all fields of primitive types.
5.2 Measures
Regression test selection techniques achieve savings by
reducing the number of test cases that need to be executed on
P’, thereby reducing the effort required to retest P’. We
conjecture that CR techniques achieve additional savings by
focusing on some methods of P0. In other words, while
system test case selection identifies the relevant test cases,
CR adds another orthogonal dimension by identifying what
methods are relevant. To evaluate these effects, we measure
the time to execute and the time to check the outputs of the

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1214

test cases in the original test suite, the selected test suite, and
the carved selected test suites. For a carved test suite, we
also measure the time and space to carve the original DUT
test suite. By default, we applied the default lossless filter on
all DUT test suites so that DUTs with unique prestates are
kept for each program method. One potential cost of
regression test selection is the cost of missing faults that
would have been exposed by the system tests prior to test
selection. Similarly, DUTs may miss faults due to the type of
change that render a DUT unexecutable or to the use of
projections aimed at improving carving efficiency. We will
measure fault detection effectiveness by computing the
percentage of faults found by each test suite. We will also
qualify our findings by analyzing instances where the
outcomes of a carved test case are different from its
corresponding system test case. To evaluate the robustness
of the carved test cases in the presence of program changes,
we are interested in considering three potential outcomes of
replaying aDUTxm on unit m0:
 1) fault is detected, DUTxm causes m’to reveal a behavioral

differences due to a fault;
 2) false difference is detected, DUTxm causes m’ to reveal a

behavioral change from m to m0 that is not a fault (not
captured by stx)

3) test is unexecutable, DUTxm is ill-formed with respect to
m0.

TABLE 1
Siena’s Component Attributes

Tests may be illformed for a variety of reasons (e.g., object
protocol changes internal structure of object changes,
invariants changes) and we refer to the degree to which a test
set becomes ill-formed under a change as its sensitivity to
change. We assess robustness by computing the percentage
of carved tests and program units falling into each one of the
outcomes. Since the robustness of a test case depends on the
change, we qualify robustness by analyzing the relationship
between the type of change and sensitivity of the DUTs.

5.3 Artifact
The artifact we will use to perform this experiment study is
Siena [25]. Siena is an event notification middleware
implemented in Java. This artifact is available for download
in the Subject Infrastructure Repository (SIR) [30], [40]. SIR
provides Siena’s source code, a system-level test suite with
503 unique test cases, multiple versions corresponding to
product releases, and a set of seeded faults in each version
(the authors were not involved in this latest activity). For this
study, we consider Siena’s core components (not the
application included in the package that is built with those
components). We utilize the five versions of Siena that have
seeded faults that did not generate compilation errors (faults
that generated compilation errors cannot be tested) and that
were exposed by at least one system test case (faults that

were not found by system tests would not affect our
assessment). For brevity, we summarize the most relevant
information to our study in Table 1 and point the reader to
SIR [31] to obtain more details about the process employed
to prepare the Siena artifact for the empirical study. Table 1
provides the number of methods, methods changed between
versions and covered by the system test suite, system tests
covering the changed methods, and faults included in each
version. It also provides the number of physical source lines
of code (SLOC) which was obtained using the wc utility.

5.4 Study Setup and Design
The activities in this study were performed on an Opteron
250 processor, with 4 Gbytes of RAM, running Linux-
Fedora, and Java 1.5. The overall process consisted of the
following steps as shown in Fig. 10. First, we prepare the
base test suites, System tests, C _ k_, C-mayref, and C-
touched. The preparation of the system-level test suite was
trivial because it was already available in the repository.

Fig. 10. Study process.

The preparation of the carved selection suites, required us to
run the CR tool to carve all the DUTs for all the methods in
v’ executed by the system tests. Once the base test suites
were generated, we performed test selection for each version,
as described in Section 5, to obtain S-retest-all, S-selection,
C-selection-k_, C-selection-mayref, and C-selection-
touched. Second, we run each generated test suite on the
fault-free versions of Siena to obtain an oracle for each
version. For the system tests, the oracle consisted of the set
of outputs generated by the program. For the carved tests,
the oracle consisted of the method return value and the
relevant spost.
Third, we run each test suite on each faulty instance of each
version (some versions contained multiple faults) and
recorded their execution time. We dealt with each fault
instance individually to control for potential masking effects
among faults that might obscure the fault detection
performance of the tests. Fourth, for each test suite, we
compared the outcome of each test case between the fault-
free version (oracle) and the faulty instances of each version.
To compare the system test outcomes between correct and
faulty versions, we used predefined differencing functions

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1215

that are part of our implementation which ignore transient
output data (e.g., dates, times, and random numbers). For the
DUTs, we performed a similar differencing, but applied to

the target method return values and posts . When the outcome

of a system test case differed between the fault-free and the
faulty version, a fault is said to be found. For the differences
on the carved tests, we performed a deeper analysis to
determine whether the observed behavioral differences
correspond to faults. Last, we compared all measures
introduced in Section 4.2 across the test suites generated by
S-retest-all, S-selection, C-selection-k_, C-selection-mayref,
and C-selection-touched. We then repeated the same steps to
collect data for the same techniques when utilizing an of-the-
shelf compression package to reduce the size of the spre. The
results emerging from this comparison are presented in the
next section.
TABLE 2
Carving Times and Sizes to Generate Initial DUT Suites

5 Results:
In this section, we provide the results for each research
question regarding carving and replaying efficiency, fault
detection effectiveness, and robustness and sensitivity of the
DUT suites.
RQ1: Efficiency. We first focus on the efficiency of the
carving process. Although our infrastructure completely
automates carving, this process does consume time and
storage so it is important to assess its efficiency as it might
impact its adoption and scalability. Table 2 summarizes the
time (in minutes) and the size (in megabytes—MB) that it
took to carve and store the complete initial suite carved from
v’ of approximately 20,000 DUTs utilizing the different CR
techniques with and without the use of compression on the

pres and posts

In the first row of Table 2, we observe that,

for Siena, constraining the carving depth barely affects the
carving time. However, we see that constraining the carving
depth can greatly reduce the required space, as carving at k
=1 requires 47 percent of the space required for carving with
infinite depth. Observe that for depths greater than 1, the
differences in storage space are small due to the rather
“shallow” nature of the artifact (dereference chains with
length greater than 2 are rare in Siena). C-select-mayref
carving required additional time because of the extra static
analysis performed up front, but consumed 55 percent of the
space. Utilizing the touched-carving projection resulted in
space requirements averaging those of k = 1 and k= .
Compressing the stored DUTs with the open source utility
bzip provided space savings of 99.7 percent when carving at
unlimited depth, but added 4-8 minutes over the whole test
suite carving process.

The last two rows of Table 2 reveal that 69 percent of the
DUTs carved at k =1 contained sentinels while only 3
percent of the DUTs carved at a k =5 contained sentinels.
The differences in sentinels mean that deeper differences in
the heap are more often obscured by using k = 1, which
explains why filtering is more effective on the smaller space
captured by k =1. The touched suite size and carving costs
resemble those of k = 1, while the mayref size and costs fit
in between those of k = 1 and k = 5. It is important to note
that the carving numbers reported in Table 2 correspond to
the initial carving of the complete DUT suite—DUTs carved
for each of the methods in Siena from each of 503 system
tests that may execute each method. Carving was performed
automatically without the tester’s participation. As with
regular unit tests, during the evolution of the system, DUTs
will be replayed repeatedly amortizing the initial carving
costs, and only a subset of the DUTs will need to be recarved
(e.g., recarving the DUTs affected by the changes in v6
would only require 2 percent of the original carving time).
Recarving will be necessary when it is determined that
changes in the program may affect a DUT’s relevant
prestate. We now proceed to analyze replay efficiency.
Replay efficiency is particularly important since, as with
regular units tests, it is likely that a carved DUT will be
repeatedly replayed as a method evolves while preserving its
original intended behavior. Fig. 11 shows the time in
minutes to execute the system regression test suites and to
replay the C-selection-k1 suite (the most expensive of all
carved suites). Each observation corresponds to the replay
time of each generated test suite under each version, while
the lines joining observations are just meant to assist in the
interpretation.

Fig. 11. Test suite execution times for system test suites
and C-selection-k1 (with and without compression).

Replaying the C-selection-k1provides gains of at least an
order of magnitude over the S-select suites, averaging less
than a minute per version. On average, replaying carved
suites take 2 percent of the time required by S-retest-all, and
3 percent of the time required by S-select. Utilizing
Cselection- k1-comp incurs a large overhead to uncompress
the DUTs content, rendering its application unlikely in spite
of the storage savings. The test suite resulting from the S-
retest-all technique consistently averages 43 minutes per
version. The test suites resulting from S-select averages 28
minutes across versions, with savings over S-retest-all
ranging from barely a minute in v7 to a maximum of 41
minutes in v6.1

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1216

We also measured the doffing time required by all
techniques. For the system test suites the doffing times were
consistently less than a minute, and for the

1. Factors that affect the efficiency of this technique
are not within the scope of this paper but can be
found in [48].

2. C-selection_ suites the time never exceeded 15
seconds, making both negligible compared with the
replay time.

Fig. 12. Test suite execution times for the C-selection-k_

suites.
 Fig. 12 summarizes the replay execution times for
some of the other test suites we generated. We find that, on
average, all the C-selection_ suites (excluding the one with
compression) replay execution time was less than 1 minute.
They all took less than 10 seconds to replay v6 and up to 96
seconds to replay the DUTs selected for v1. Constraining the
carving depth with k = 1 consistently reduced replay time
(over percent 50 reduction in v5). Similarly, constraining the
carving space through either C-selection-mayref or C-
selection-touched reduced the replay time in some versions
(almost 20 percent reduction in v1).
RQ2: Fault detection effectiveness. Most of the test suites
carved from S-selection, (with k_1), C-selectionmayref, and
C-selection-touched detected as many faults as the S-retest-
all technique. This indicates that a DUT test suite can be as
effective as a system test suite at detecting faults, even when
using aggressive projections. It is worth noting, however,
that computing fault detection effectiveness over a whole
DUT suite overlooks the fact that, for some system tests,
their corresponding carved DUTs may have lost or gained
fault detection effectiveness. We conjecture that this is a
likely situation with our artifact because many of the faults
are detected by multiple system tests, so there were many
carved DUTs that could have detected each fault. To address
this situation, we perform an effectiveness analysis at the test
case level. For each carving technique we compute: 1) PP,
the percentage of passing selected system tests (selected
utilizing S-Selection) that have all corresponding DUTs
passing, and 2) FF, the percentage of failing system tests that
have at least one corresponding failing DUT. Table 3
presents the PP and FF values for the suites under all faults
in each version. In general, we observe that most PP and FF
values are over 90 percent indicating that DUTs carved from
a system test case tend to preserve much of their
effectiveness. But, we can also identify some interesting
exceptions. For example, independent of the DUT suite, for
v7: f1 (the first fault in version v7), only 24 percent of the

passing system tests had all their associated DUTs passing.
The rest of the system tests had at least one DUT that
detected a behavioral difference that was not detected by the
system test case oracle because it did not propagate to the
output (the level at which the system test case oracle
operated). This is one example where a DUT is more
powerful than its corresponding system test. Another
interesting instance is FF for C-selection-k1, v5, where we
observed that replaying the carved test suite did not detect
any of the behavioral differences exhibited by the selected
system test cases. Upon further examination, we found that
the changed method in v5 required access to references in
the heap deeper than k = 1 which were not satisfied by the
captured prestate of the C-selection-k1 suite, therefore
resulting in SentinelAccessException.
Because of this, no poststates were stored for the method and
the fault goes undetected. The other carved test suites on v5
did detect the fault since they either carved deeper prestates
or, in the case of the touched-carving projection test suite,
carved the parts of the prestates that were necessary for the
methods under test. Still, for the other suites on v5, 3 out of
the 300 failing system tests did not have any corresponding
DUT on the changed methods failing (99 percent). We
observed a similar situation in v7: f2 where 18 out of 203
DUTs (9 percent) did not expose behavioral differences even
though the corresponding system tests failed. When we
analyzed the reasons for this reduction in FF, we discovered
that in both cases the tool did not carve in v0 the prestate for
one of the changed methods because the system test case did
not reach them;
TABLE 3
Fault Detection Effectiveness

TABLE 4
Robustness and Sensitivity

call graphs generated for the system test cases indicate that
the faulty methods were not invoked during the execution of
some of the system test cases on v’ of Siena. Changes in the
code structure (e.g., addition of a method call), however,
made the system test cases reach those changed methods
(and expose a fault) in later versions. In both circumstances,
improved DUTs that would have resulted in 100 percent FF
could have been generated by recarving the test cases in later
versions (carve from vi instead of v’ to replay in viþ1).
More generally, these observations point out again for the
need for mechanisms to detect changes in the code that
should trigger recarving.

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1217

RQ3: Robustness and sensitivity. We examined how DUTs
obtained through C-selection-k1 are quite fragile in terms of
their executability, and how certain code changes may make
a method reach a new part of the heap that was not originally
carved. We further evaluate the robustness
and sensitivity of DUTs by comparing their performance in
the presence of methods that changed but are not faulty and
in the presence of methods that changed and are indeed
faulty. We performed such detailed comparison on the suites
generated with C-selection-k1. Table 4 summarizes the
findings and we now briefly discuss distinct instances of the
scenarios we found.
In both faulty instances of v7, the version with the most
methods changed (10), none of the DUTs revealing
behavioral differences were found by methods other than the
faulty ones.
This is clearly an ideal situation, which is also present in v6.
V1: f3 represents perhaps a more common case where 15
percent of the DUTs going through nonfaulty changed
methods detected differences, but 100 percent of the DUTs
traversing faulty methods actually revealed a poststate
difference. V 1 : f2 presents a scenario in which carving
generates more behavioral differences for the nonfaulty
changed methods than for the faulty changed methods,
showing that even for correct changes the number of affected
DUTs may be large (13 out of 65). In this case, the
implementation change was such that the method switched
the order of division and multiplication operations involving
a variable which was eventually returned. Because of this,
there was a difference in the return value, which was
detected as a behavioral difference, and would probably be
detected by other forms of unit tests as well.
It is worth noting that the differencing functions offer an
opportunity to control this problem. For example, a more
relaxed differencing mechanism focused on just return
values could have detected the fault while reducing the
number of false differences if the fault manifests itself in the
return value. Mechanisms to select and appropriately
combine these differencing functions will be important for
the robustness and sensitivity of DUTs. In addition, we
anticipate that as the CR components of the framework
become parts of an IDE, the additional change information
available in the developer’s environment could help to
reduce the number of false positives. For example, code
modifications due to refactoring that do not affect the target
unit’s interface would be expected to retain the same
behavior. However, changes that can be mapped to the bug
repository would be expected to affect the unit’s behavior.
5.6 Targeted Case Studies
The previous study addressed the stated research questions
with respect to Siena, and we believe the findings generalize
to similar artifacts. Still, we realize that our study suffers
from threats to validity. Specifically, the selected artifact
provided limited exposure to CR in the presence of deeper
heap structures, extensive software changes, and high
number of methods invocations. We have started to address
those threats to the validity of our findings by investigating
the performance of CR in the presence of such settings.
 More specifically, we have studied the performance
of CR on two other artifacts, NanoXML and Jtopas [30], that
provide exposure to more complex heap structures,
highfrequency executions sequences, and extensive changes

between versions. These studies confirm our previous
findings, but also show that the performance of the different
carving strategies can vary significantly in programs with
complex heap structures, that the Replay AnomalyHandler
can enhance DUTs reuse and potential for fault detection
with affordable replay costs, and that the clustering
projection can be very effective to reduce the number of
DUTs on high-frequency methods. Due to space constraints,
the detailed settings and results are omitted here but
available in a technical report [28].

Section 6:RELATED WORK
Our work was inspired by Weide’s notion of modular testing
as a means to evaluate the modular reasoning property of a
piece of software [49]. Although Weide’s focus was on the
evaluation of the fragility of modular reasoning, he raised
some important questions regarding the potential
applicability of what he called a “modular regression
technique” that led to our work. Within the context of
regression testing, our approach is similar to Binkley’s
semantic guided regression testing in that it aims to reduce
testing costs by running a subset of the program [21], [22].
Binkley’s technique utilizes static slicing to identify
potential semantic differences between two versions of a
program. He also presents an algorithm to identify the
system tests that must be run on the slices resulting from the
differences between the program versions.
The fundamental distinction between this and our approach
is that we do not run system-level tests, but rather smaller
and more focused unit tests. Another important distinction is
that our targets are not the semantic differences between
versions, but rather methods in the program. The preliminary
results from our original test carving prototype [38]
evidenced the potential of carved tests to improve the
efficiency and the focus of a large system test suite,
identified challenges to scale up the approach, and pinpoint
scenarios under which the carved test cases would and would
not perform well. We have built on that work by presenting a
generic framework for differential carving, extending the
type of analysis we performed to make the approach more
scalable, and by developing a full set of tools that can enable
us to explore different techniques on various programs. We
are aware of other research efforts related to the notion of
test carving. First, Orso and Kennedy’s and Clause et al.’s
notion of selective capture and replay of program executions
[36]. Orso and Kennedy’s technique [36] aims to selectively
capture and replay events and interactions between the
selected program components and the rest of the application.
The technique captures a simplified state representation
composed of the object IDs, types, and scalar values directly
utilized by the selected program components to enable
replay. The approach is similar to carving with a touched
projection with the difference that simplified heap structures
are used to represent the program state. Second, the test
factoring approach introduced by Saff and Ernst takes a
similar approach to Orso’s with the creation of mock objects
that serve to create the scaffolding to support the execution
of the test unit [43]. The same group introduced a tool set for
a fully featured Java execution environments that can handle
many of the subtle interactions present in this programming
language (e.g., callbacks, arrays, and native methods) [42].
Saff et al.’s work [34] carves a method test case by recording

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1218

the sequence of calls that can influence the method, the
sequence of calls made by the method, and the return values
and unit state side effects of those calls. In our framework,

this would amount to calculating __ such that ()s  = pres for

the method of interest and then calculating summarizing
traces __calli that reflect the return value and side effects for
each call out of the method and carving pres , the relevant

prestate for each call. During replay, the same sequence of
calls with the same parameters is expected—any deviation
results in areport of a differenceduring replay. In our
framework, we would identify the points at which the n calls
out of the method occur as poststate locations to define a

DUT of the form 1 1((.....), , (,.....))j pre post posths s s  . The

approaches introduced by Orso et al. and Saff et al. are
action-based approaches that capture the interactions
between the target unit and its context and then build the
scaffolding to replay just those interactions. Hence, they do
not incur in costs associated with capturing and storing the
system state for each targeted unit. On the other hand, these
approaches are likely to generate inefficient unit tests in the
presence of long-running system tests and they may generate
tests that are too sensitive to simple changes that do not
effect meaning of the unit (e.g., changing the order of
independent method calls). Saff et al. have identified this
issue and propose to analyze the life span of the factored test
cases across sequences of method modifications [42].
This is a critical factor in judging the cost-effectiveness of
CR testing, and we have started to study it in Section 4.5. In
terms of our framework, both of these approaches would be
considered action-based CR approaches. We have presented,
what is to the best of our knowledge, the first statebased
approach to CR testing. More recently, Xu et al. have
proposed a hybrid approach that mixes action based with
state based to enhance replay efficiency [50]. The approach
only captures the set of runtime values required to reach a
checkpoint and the values that could potentially be required
to complete execution after the checkpoint. The set of
runtime values required is obtained by computing the slice of
the program required to generate those values (similar to
action based). The set of values that could be required to
complete execution is computed by walking the heap
(similar to state based). In our framework, such a test could

be defined by calculating traces control control leading to

checkpoint pres and a number of states 1posts corresponding

to the method return points. This would result in a DUT of

the form 1 1((.....), , (,.....))j pre post posths s s  where j is

the number of relevant subtraces that lead to the checkpoint
stack and h is the number of states that affect the
postcheckpoint program execution.
All of these related efforts have shown their feasibility in
terms of being able to replay tests and Saff et al.’s and Xu et
al.’s approaches have provided initial evidence that they can
save time and resources under several scenarios. None of
these approaches, however, has been evaluated in terms of
its fault detection effectiveness which ultimately determines
the value of the carved tests, or in the context of regression
testing. Our work also relates to efforts aimed at developing
unit test cases. Several frameworks grouped under the

umbrella of Xunit have been developed to support software
engineers in the development of unit tests. JUnit, for
example, is a popular framework for the Java programming
language that lets programmers attach testing code to their
classes to validate their behavior [31]. There are also
multiple approaches that automate, to different degrees, the
generation of unit tests. For example, commercial tools such
as Jtest, developed by a company called Parasoft, develop
unit test cases by analyzing method signatures and selecting
test cases that increase some coverage criteria [51]. Some of
these tools aim to assess software robustness (e.g., whether
an exception is thrown [52]). Others utilize some type of
specification such as pre and postconditions or operational
abstractions, to guide the test case generation and actually
check whether the test outcome meets the expectation results
[23], [27], [37], [45]. Interestingly enough, a part of JTest
called JTest Tracer can be used to monitor a deployed
application in real time and capture inputs to generate
realistic JUnit test cases [51], a process somewhat similar to
carving. Although carving also aims to generate unit test
cases, the approach we propose is different from previous
unit test case generation mechanisms since it consists of the
projection of a system test case onto the targeted software
unit. As such, we expect for carved unit tests to retain some
of the interesting interactions exposed by systems tests. In
general, such interactions are hard to design and are rarely
included in regular unit test cases. As stated, the poststate
differencing functions that regulate the detection of
differences between encodings of unit behavior belongs to a
larger body of testing work on differential-based oracles. For
example, the work of Weyuker [44] on the development of
pseudo-oracles,
Jaramillo et al. [32] on using comparisons to check for
optimization induced errors in compilers, or the comparison
of program spectra [39] are instances of utilizing
differencing-type oracles at the system or subsystem level.
When focusing at the unit level of object-oriented programs,
as we are doing, Binder suggests the term “concrete state”
oracles, which aim to compare the value of all the unit’s
attributes against what is expected [20]. Briand et al. referred
to this type of oracle as a “precise” oracle because it was the
most accurate one employed in their studies [24]. Overall,
the notion of testing being fundamentally differential has
long been understood [44], since the pseudo-oracles against
which systems are judged correct are themselves subject to
error. Thus, the question we aimed to answer is not whether
our CR method judges a system correct or incorrect, but
rather whether it is capable of cost-effectively detecting
differences between encodings of system behavior that
developers can easily mine to judge whether the difference
reflects an error.

CONCLUSION
We have presented a general framework for automatically
carving and replaying DUTs. The framework accommodates
two types of state representation, and incorporates
sophisticated projection, anomaly handling, and differencing
strategies that can be instantiated in various ways to suit
distinct trade-offs. We have implemented a state-based
instance of the framework that mitigates testing costs
through a family of reachability-based projections, that
enhances DUT robustness through replay anomaly handlers,

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1219

and that can adjust the sensitivity of DUTs through
differencing functions. Our evaluation of this
implementation on Siena, NanoXML, and JTopas provides
evidence that DUTs can be generated automatically from
system tests, can provide efficiency gains of orders of
magnitude while retaining most of the effectiveness of
system tests in a regression testing context, and can be robust
to program changes and scale to large and complex heap
structures. The experiences gained while instantiating and
assessing the framework suggest several directions for future
work.
First, we will perform further studies not only to confirm our
findings on other artifacts under similar settings but also to
compare DUTs with traditional unit tests developed by
software engineers. We conjecture that software engineers
develop rather shallow unit tests and that we can effectively
complement those with DUTs that expose the target units to
more complex execution settings. A longer-term direction is
the exploration of other transformation techniques that
utilize our current test representation. For example, we are
investigating automated mechanisms that combine multiple
DUTs to create an aggregated DUT for a larger program unit
such as a class. This could be achieved by clustering
multiple DUTs based on the identity of the receiver object,
effectively transferring the effects of methods on the receiver
object throughout the sequence, achieving a kind of
interaction testing between calls. Ultimately, we envision a
family of automated transformations of testing resources
where carving is just one of those transformations.

Applications
Generating tests of different granularity.
Unit test cases are focused and efficient. System tests are
effective at exercising complex usage patterns. Differential
unit tests (DUT) are a hybrid of unit and system tests. They
are generated by carving the system components, while
executing a system test case, that influence the behavior of
the target unit, and then re-assembling those components so
that the unit can be exercised as it was by the system test.
DUTs retain some of the advantages of unit tests, can be
automatically and inexpensively generated, and have the
potential for revealing faults related to intricate system
executions.

Tool Support
Features included:
 Automatically carving DUTs from a running application
 DUTs reductions and filtering projections (e.g. identical

pre-state representations)
 Ability to customize post-state output (simple hash for

space savings, full state for easier analysis, etc.)
 Customizable replay specifications for individual

methods or sequence of methods
 Anomaly replay handler (e.g., to replay caller of failed

method or replayable frontier)
 DUT to JUnit Translation

Reference
[1]. B. Beckert and C. Gladisch. White-box testing by combining deduction-
based specification extraction and black-box testing. In TAP. Springer, 007.
[2]. B. Beckert, R. H¨ahnle, and P. H. Schmitt, editors. Verification of bject-
Oriented Software: The KeY Approach. LNCS 4334. Springer, 2007.
[3]. L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A
developer-oriented approach. In FME, pages 422–439, 2003.

[4]. S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde. Carving and
replaying differential unit test cases from system test cases. IEEE TSE,
35(1):29–45, 2009.
[5]. C. Engel, C. Gladisch, V. Klebanov, and P. R¨ummer. Integrating
verification and testing of object-oriented software. In TAP, pages 182–191,
2008.
[6]. C. Engel and R. H¨ahnle. Generating unit tests from formal proofs. In
TAP, pages 169–188, 2007.
[7]. M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.
[8]. C. Gladisch. Verification-based test case generation for full feasible
branch coverage. In SEFM, pages 159–168, 2008.
[9]. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel.
An empirical study of regression test selection techniques. TOSEM,
10(2):184–208, 2001.
[10]. P. Hamill. Unit test frameworks. O’Reilly, 2004.
[11]. M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S.
Sinha, S. A. Spoon, And A. Gujarathi. Regression test selection for Java
software. SIGPLAN Not., 36(11):312– 326, 2001.
[12]. T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: unit testing
with mock objects. In Extreme Programming Examined, pages 287–301.
Addison-Wesley, 2001.
[13]. B. Pasternak, S. Tyszberowicz, and A. Yehudai. Genutest: a unit test
and mock aspect generation tool. Journal on Software Tools for Technology
Transfer, 2009.
[14]. D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test
factoring for java. In ASE, pages 114–123, 2005.
[15]. N. Tillmann and J. de Halleux. Pex-white box test generation for
.NET. In TAP, pages 134–153, 2008.
[16]. H. van Vliet. Software Engineering: Principles and Practice (2nd ed.).
John Wiley & Sons, Inc., 2000.
[17]. T. Xie. Augmenting automatically generated unit-test suites with
regression oracle checking. In ECOOP, pages 380–403, 2006.
[18]. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting
redundant Object oriented unit tests. In Proc. 19th ASE, pages 196–205,
September 2004.
[19]. Extreme Programming. http://www.extremeprogramming.org. Visited
January 2010.
[20]. R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools, chapter 18, Object Technologies, pp. 943-951, first ed. Addison
Wesley, Oct. 1999.
[21]. D. Binkley, “Semantics Guided Regression Test Cost Reduction,”
IEEE Trans. Software Eng., vol. 23, no. 8, pp. 498-516, Aug. 1997.
[22].D. Binkley, R. Capellini, L. Ross Raszewski, and C. Smith, “An
Implementation of and Experiment with Semantic Differencing,” Proc.
IEEE Int’l Conf. Software Maintenance, pp.82-91, Nov. 2001.
[23].C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated Testing
Based on Java Predicates,” Proc. Int’l Symp. Softwar Testing and Analysis,
pp. 123-133, July 2002.
[24].L.C. Briand, M. Di Penta, and Y. Labiche, “Assessing and Improving
State-Based Class Testing: A Series of Experiments, IEEE Trans. Software
Eng., vol. 30, no. 11, pp. 770-793, Nov. 2004.
[25].A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving Scalability and
Expressiveness in an Internet-Scale Event Notification Service,” Proc. 19th
Ann. ACM Symp. Principles of Distributed Computing, pp. 219-227, July
2000.
[26].Y.-F. Chen, D.S. Rosenblum, and K.-P. Vo, “TestTube: A System for
Selective Regression Testing,” Proc. 16th Int’l Conf. Software Eng., pp.
211-220, May 1994.
[27].Y. Cheon and G.T. Leavens, “A Simple and Practical Approach to Unit
Testing: The JML and JUnit,” Proc. 16th European Conf. Object- Oriented
Programming, pp. 231-255, June 2002.
[28].H.N. Chin, S. Elbaum, M.B. Dwyer, and M. Jorde, “DUTs: Targeted
Case Studies,” Technical Report TR-UNL-CSE-2007- 0005, Univ. of
Nebraska, Aug. 2008.
[29].S. Dieckmann and U. Holzle, “A Study of the Allocation Behavior of
the Specjvm98 Java Benchmark,” Proc. 13th European Conf. Object-
Oriented Programming, pp. 92-115, June 1999.
[30].H. Do, S.G. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and Its
Potential Impact,” Empirical Software Eng.: An Int’l J., vol. 10, no. 4, pp.
405-435, Oct. 2005.
[31.]E. Gamma and K. Beck, JUnit, http://sourceforge.net/projects/ junit,
Dec. 2005.
[32].C. Jaramillo, R. Gupta, and M.L. Soffa, “Comparison Checking: An
Approach to Avoid Debugging of Optimized Code,” Proc. European
Software Eng. Conf./Foundations of Software Eng., pp. 268- 284, Sept.
1999.

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1220

[33] H.K.N. Leung and L. White, “Insights into Regression Testing,” Proc.
IEEE Int’l Conf. Software Maintenance, pp. 60-69, Oct. 1989.
[34] H.K.N. Leung and L. White, “A Study of Integration Testing and
Software Regression at the Integration Level,” Proc. IEEE Int’l Conf.
Software Maintenance, pp. 290-300, Nov. 1990.
[35] A.K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment,” Comm. ACM, vol. 41,
no. 5, pp. 81-86, May 1998.
[36] A. Orso and B. Kennedy, “Selective Capture and Replay of Program
Executions,” Proc. Third Int’l Workshop Dynamic Analysis, May 2005.
[37] C. Pacheco and M.D. Ernst, “Eclat: Automatic Generation and
Classification of Test Inputs,” Proc. 19th European Conf. Object- Oriented
Programming, pp. 504-527, July 2005.
[38] S.K. Reddy, “Carving Module Test Cases from System Test Cases: An
Application to Regression Testing,” master’s thesis, Dept. of Computer
Science and Eng., Univ. of Nebraska, July 2004.
[39] T. Reps, T. Ball, M. Das, and J. Larus, “The Use of Program Profiling
for Software Maintenance with Applications to the Year 2000 Problem,”
Proc. European Software Eng. Conf./Foundations of Software Eng.), pp.
432-449, Sept. 1997.
[40] G. Rothermel, S. Elbaum, and H. Do, Software Infrastructure
Repository, http://cse.unl.edu/galileo/php/sir/index.php, Jan. 2006.
 [41] G. Rothermel and M.J. Harrold, “Analyzing Regression Test Selection
Techniques,” IEEE Trans. Software Eng., vol. 22, no. 8, pp. 529-551, Aug.
1996.
[42] D. Saff, S. Artzi, J. Perkins, and M. Ernst, “Automated Test Factoring
for Java,” Proc. 20th Ann. Int’l Conf. Automated Softwar Eng., pp. 114-
123, Nov. 2005.
[43] D. Saff and M. Ernst, “Automatic Mock Object Creation for Test
Factoring,” Proc.
SIGPLAN/SIGSOFT Workshop Program Analysis for Software Tools and
Eng., pp. 49-51, June 2004.
[44] E.J. Weyuker, “On Testing Non-Testable Programs,” The Computer J.,
vol. 25, no. 4, pp. 465-470, Nov. 1982.
[45] T. Xie and D. Notkin, “Tool-Assisted Unit-Test Generation and
Selection Based on Operational Abstractions,” Automated Software Eng. J.,
July 2006.
[46] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer and Matthew
Jorde, “Carving and Replaying Differential Unit Test Cases from System
Test Cases” IEEE Transactions On Software Engineering, vol. 35, no. 1,
January/February 2009
[47] V.P. Ranganath and J. Hatcliff, “Pruning Interference and Ready
Dependence for Slicing Concurrent Java Programs,” Proc. 13th Int’l Conf.
Compiler Construction, pp. 39-56, Apr. 2004.
[48] S. Elbaum, P. Kallakuri, A.G. Malishevsky, G. Rothermel, and S.
Kanduri, “Understanding the Effects of Changes on the Cost- Effectiveness
of Regression Testing Techniques,” J. Software Testing, Verification, and
Reliability, vol. 13, no. 2, pp. 65-83, June 2003.
[49] B. Weide, “Modular Regression Testing: Connections to Component-
Based Software,” Proc. Fourth ICSE Workshop Component- Based
Software Engineering, pp. 82-91, May 2001.
[50] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient Checkpointing of
Java Software Using Context-Sensitive Capture and Replay,” Proc. ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 85-9 Oct. 2007.
[51] JTest, Jtest Product Overview,
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest, Oct. 2005.
[52] C. Csallner and Y. Smaragdakis, “Jcrasher: An Automatic Robustness
Tester for Java,” Software Practice and Experience, vol. 34, no. 11, pp.
1025-1050, Sept. 2004.
[53] Xstream—1.1.2, XStream, http://xstream.codehaus.org, Aug. 2005.

Authors Biography

Dr. C. P. V. N. J. Mohan Rao, is working as
Professor & Principal of Avanthi College of
Engineering & Technology, Tamaram,
Makavarapalem, Narsipatnam (RD), Visakhapatnam,
Andhra Pradesh, INDIA. He obtained PhD from
Andhra University and having 15 years experience.
He published more than 18 papers in reputed Journals.

Nandagiri R G K Prasad, Studying M.Tech in
Software Engineering, in CSE Department, Avanthi
College of Engineering & Technology, Tamaram,
Makavarapalem, Narsipatnam (RD), Visakhapatnam,
Andhra Pradesh, INDIA. I worked as an Assistant
Professor in CSE Department at VITAM College of
Engineering, Sontyam, Anadapuram Mandal,
Visakhapatnam, Andhra Pradesh, India.

Somayajula Satya Pavan Kumar is working as
Assistant Professor, in CSE Department, , Avanthi
College of Engineering & Technology, Tamaram,
Visakhapatnam, A.P., India. He has received his
M.Sc(Physics) from Andhra University,
Visakhapatnam and M.Tech (CST) from Gandhi
Institute of Technology And Management
University (GITAM), Visakhapatnam, Andhra
Pradesh, INDIA. His research areas include
Software Engineering and network security.

C.P.V.N.J. Mohan Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1202-1221

1221

